Advertisement

Rieger-type periodicities on the Sun and the Earth during solar cycles 21 and 22

  • H. G. Silva
  • I. Lopes
Original Article
  • 156 Downloads

Abstract

Rieger-type periods of the magnetic sunspot area time series have been found in two atmospheric time-series variables: neutron monitor count rate and atmospheric electric potential gradient. The data considered comprises two solar cycles (21, 22) and spans from 1978 to 1990. The study reveals the existence of similar and correlated features in sunspot area as well as neutron counts and atmospheric electric potential gradient, favoring the possibility that the Sun’s activity affects the Earth’s atmosphere and weather at a time scale between 150–300 days. Moreover, five different Rieger-type periods in the sunspot area time series are found, four of which are detected in the neutron monitor count rate, and three in the atmospheric electric potential gradient. These values are consistent with the periods predicted for stationary solar Rossby waves existing inside the Sun. The possibility is discussed that instabilities on the solar magnetic field caused by solar Rossby waves in the Sun’s interior might indirectly be affecting the activity of the heliosphere and the Earth’s atmosphere.

Keywords

Solar physics Space–Earth weather Surface Earth’s atmosphere Atmospheric electricity 

Notes

Acknowledgements

Gratitude is expressed to Cláudia Serrano and Samuel Bárias for digitalizing the PG data recorded by Doctor Mário Figueira (former Portuguese Service of Meteorology). The authors are thankful to the Climax Neutron Counter Facility for access to the NC time series and to NOAA for making available the SSA data. Gratitude is also expressed for ELECTRONET (CA15211) COST-Action.

References

  1. Arlt, R., Weiss, N.: Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev. 186(1–4), 525–533 (2014) ADSGoogle Scholar
  2. Charbonneau, P.: Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). http://www.livingreviews.org/lrsp-2010-3 CrossRefADSGoogle Scholar
  3. Chowdhury, P., Jain, R., Awasthi, A.K.: Periodicities in the X-ray emission from the solar corona. Astrophys. J. 778(1), 28 (2013) CrossRefADSGoogle Scholar
  4. Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.-J.: Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar cycle 24. Astrophys. Space Sci. 356, 7 (2015) CrossRefADSGoogle Scholar
  5. Dimitropoulou, M., Moussas, X., Strintzi, D.: Enhanced Rieger-type periodicities’ detection in X-ray solar flares and statistical validation of Rossby waves’ existence. Mon. Not. R. Astron. Soc. 386, 2278 (2008) CrossRefADSGoogle Scholar
  6. Droege, W., Gibbs, K., Grunsfeld, J.M., et al.: A 153 day periodicity in the occurrence of solar flares producing energetic interplanetary electrons. Astrophys. J. 73, 279 (1990) CrossRefGoogle Scholar
  7. Gonzalez, A.L.C., Gonzalez, W.D., Dutra, S.L.G., Tsurutani, B.T.: Periodic variation in the geomagnetic activity: a study based on the Ap index. J. Geophys. Res. 98, 9215 (1993) CrossRefADSGoogle Scholar
  8. Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S.: Rieger-type periodicity during solar cycles 14–24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826, 55 (2016) CrossRefADSGoogle Scholar
  9. Haigh, J.D.: The Sun and the Earth’s climate. Living Rev. Sol. Phys. 4, 2 (2007) CrossRefADSGoogle Scholar
  10. Harrison, R.G., Mãrcz, F.: Heliospheric timescale identified in surface atmospheric electricity. Geophys. Res. Lett. 34, L23816 (2007) CrossRefADSGoogle Scholar
  11. Harrison, R.G., Ambaum, M.H.P., Lockwood, M.: Cloud base height and cosmic rays. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 467, 2777 (2011) CrossRefADSGoogle Scholar
  12. Hathaway, D.H.: The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010) CrossRefADSGoogle Scholar
  13. Hill, J.R.: Long term solar activity forecasting using high-resolution time spectral analysis. Nature 266, 151 (1977) CrossRefADSGoogle Scholar
  14. Kile, J.N., Cliver, E.W.: A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955–1990. Astrophys. J. 370, 442 (1991) CrossRefADSGoogle Scholar
  15. Krivova, N.A., Solanki, S.K.: The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701 (2002) CrossRefADSGoogle Scholar
  16. Lean, J.L., Brueckner, G.E.: Intermediate-term solar periodicities—100–500 days. Astrophys. J. 337, 568 (1989) CrossRefADSGoogle Scholar
  17. Lockwood, M.: Solar influence on global and regional climates. Surv. Geophys. 33, 503 (2012) CrossRefADSGoogle Scholar
  18. Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 33, 503 (2012) Google Scholar
  19. Lopes, I., Silva, H.G.: Looking for granulation and periodicities imprints in the sunspot time series. Astrophys. J. 804, 120 (2015) CrossRefADSGoogle Scholar
  20. Lopes, I., Passos, D., Nagy, M., Petrovay, K.: Oscillator models of the solar cycle. Space Sci. Rev. 186, 535 (2014) ADSGoogle Scholar
  21. Lucio, P.S.: Learning with solar activity influence on Portugal’s rainfall: a stochastic overview. Geophys. Res. Lett. 32, L23819 (2005) CrossRefADSGoogle Scholar
  22. Mareev, E.A., Volodin, E.M.: Variation of the global electric circuit and ionospheric potential in a general circulation model. Geophys. Res. Lett. 41, 9009 (2014) CrossRefADSGoogle Scholar
  23. Markson, R.: Modulation of the Earth’s electric field by cosmic radiation. Nature 291, 304 (1981) CrossRefADSGoogle Scholar
  24. Nicoll, K.A., Harrison, R.G.: Detection of lower tropospheric responses to solar energetic particles at midlatitudes. Phys. Rev. Lett. 112, 225001 (2014) CrossRefADSGoogle Scholar
  25. Owens, M.J., Scott, C.J., Lockwood, M., Barnard, L., Harrison, R.G., Nicoll, K., Watt, C., Bennett, A.J.: Modulation of UK lightning by heliospheric magnetic field polarity. Environ. Res. Lett. 9, 115009 (2014) CrossRefADSGoogle Scholar
  26. Papaloizou, J., Pringle, J.E.: Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables. Mon. Not. R. Astron. Soc. 182, 423 (1978) CrossRefMATHADSGoogle Scholar
  27. Potgieter, M.S.: Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10, 3 (2013) CrossRefADSGoogle Scholar
  28. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd edn. University Press, Cambridge (1992) MATHGoogle Scholar
  29. Provost, J., Berthomieu, G., Rocca, A.: Low frequency oscillations of a slowly rotating star—quasi toroidal modes. Astron. Astrophys. 94, 126 (1981) MATHADSGoogle Scholar
  30. Richardson, I.G., Cane, H.V.: The \({\sim }150\) day quasi-periodicity in interplanetary and solar phenomena during cycle 23. Geophys. Res. Lett. 32, L02104 (2005) CrossRefADSGoogle Scholar
  31. Rieger, E., Kanbach, G., Reppin, C., et al.: A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623 (1984) CrossRefADSGoogle Scholar
  32. Saio, H.: R-mode oscillations in uniformly rotating stars. Astrophys. J. 256, 717 (1982) MathSciNetCrossRefADSGoogle Scholar
  33. Scargle, J.D.: Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835 (1982) CrossRefADSGoogle Scholar
  34. Scott, C.J., Harrison, R.G., Owens, M.J., Lockwood, M., Barnard, L.: Evidence for solar wind modulation of lightning. Environ. Res. Lett. 9, 055004 (2014) CrossRefADSGoogle Scholar
  35. Serrano, C., Reis, A.H., Rosa, R., Lucio, P.S.: Influences of cosmic radiation, artificial radioactivity and aerosol concentration upon the fair-weather atmospheric electric field in Lisbon (1955–1991). Atmos. Res. 81, 236 (2006) CrossRefGoogle Scholar
  36. Shoelson, B.: (2003). www.mathworks.com/matlabcentral
  37. Silva, H.G., Lopes, I.: Phase-space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22. Earth Planets Space 68, 119 (2016) CrossRefADSGoogle Scholar
  38. Silva, H.G., Conceicao, R., Melgao, M., Nicoll, K., Mendes, P.B., Tlemcani, M., Rei, A.H., Harrison, R.G.: Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence. Environ. Res. Lett. 9, 114025 (2014) CrossRefADSGoogle Scholar
  39. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084 (2004) CrossRefADSGoogle Scholar
  40. Solanki, S.K., Krivova, N.A., Haigh, J.D.: Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311 (2013) CrossRefADSGoogle Scholar
  41. Sturrock, P.A., Bertello, L.: Power spectrum analysis of Mount Wilson solar diameter measurements: evidence for solar internal R-mode oscillations. Astrophys. J. 725, 492 (2010) CrossRefADSGoogle Scholar
  42. Sturrock, P.A., Bush, R., Gough, D.O., Scargle, J.D.: Indications of R-mode oscillations in SOHO/MDI solar radius measurements. Astrophys. J. 804, 47 (2015) CrossRefADSGoogle Scholar
  43. Thomas, S.R., Owens, M.J., Lockwood, M.: The 22-year Hale cycle in cosmic ray flux—evidence for direct heliospheric modulation. Sol. Phys. 289, 407 (2014) CrossRefADSGoogle Scholar
  44. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61 (1998) CrossRefADSGoogle Scholar
  45. Verma, V.K., Joshi, G.C., Uddin, W., Paliwal, D.C.: Search for a 152–158 days periodicity in the occurrence rate of solar flares inferred from spectral data of radio bursts. Astron. Astrophys. 90, 83 (1991) ADSGoogle Scholar
  46. Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709, 749 (2010a) CrossRefADSGoogle Scholar
  47. Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. Astrophys. J. 724, L95 (2010b) CrossRefADSGoogle Scholar
  48. Zaqarashvili, T.V., Oliver, R., Hanslmeier, A., et al.: Long-term variation in the Sun activity caused by magnetic Rossby waves in the tachocline. Astrophys. J. 805, L14 (2015) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Renewable Energies Chair, IIFA, Palacio do VimiosoUniversidade de EvoraEvoraPortugal
  2. 2.CENTRA, Departamento de Fisica, Instituto Superior Tecnico, Pavilhao de FisicaUniversidade de LisboaLisboaPortugal

Personalised recommendations