Advertisement

Astrophysics and Space Science

, Volume 307, Issue 4, pp 365–367 | Cite as

A Cosmological Model with a Negative Constant Deceleration Parameter in Scale-Covariant Theory of Gravitation

  • D. R. K. Reddy
  • R. L. Naidu
  • K. S. Adhav
Original Article

Abstract

An axially symmetric Bianchi type-I space-time is considered in the presence of perfect fluid source in the scale-covariant theory of gravitation formulated by Canuto et al. [1977a, Phys. Rev. Lett. 39, 429]. With the help of special law of variation for Hubble’s parameter proposed by Bermann [1983, Nuovo Cimento 74B, 182] a cosmological model with a negative constant declaration parameter is obtained in this theory. Some physical properties of the model are also discussed.

Keywords

Deceleration parameter Cosmological model Scale-covariant theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bermann, M.S.: Nuovo Cimento 74B, 182 (1983)ADSGoogle Scholar
  2. Brans, C.H., Dicke, R.H.: Phys. Rev. 24, 925 (1961)CrossRefADSMathSciNetGoogle Scholar
  3. Canuto, V.M., Goldman, I.: Nature 304, 311 (1983a)CrossRefADSGoogle Scholar
  4. Canuto, V.M., Goldman, I.: in G.O. A bell and Chincarini (eds.), D. Reidel Pub. Co. Dordrecht, Holland, p. 485 (1983b)Google Scholar
  5. Canuto, V.M., Hsieh, S.H., Adams, P.J.: Phys. Rev. Lett. 39, 429 (1977a)CrossRefADSGoogle Scholar
  6. Canuto, V.M., Hsieh, S.H., Tsiang, E.: Phys. Rev. D16, 1643 (1977b)ADSMathSciNetGoogle Scholar
  7. Lyra, G.: Math. Z. 54, 52 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  8. Nordtvedt, K. Jr.: Astrophys. J. 161, 1069 (1970)CrossRefADSMathSciNetGoogle Scholar
  9. Reddy, D.R.K., Rao, M.V.S.: Astrophys. Space Sci. 305, 183 (2006)Google Scholar
  10. Reddy, D.R.K., Rao, M.V.S., Kelkar, I.: Astrophys. Space Sci. 306, 1 (2006a)Google Scholar
  11. Reddy, D.R.K., Naidu, R.L., Rao, V.U.M.: Astrophys. Space Sci. 306, 185 (2006b)Google Scholar
  12. Reddy, D.R.K., Rao, M.V.S., Rao, G.K.: Astrophys. Space Sci. 306, 171 (2006c)Google Scholar
  13. Reddy, D.R.K., Naidu, R.L., Rao, V.U.M.: Int. J. Theor. Phys. DOI 10.1007/s10773-006-9283-0 (2006d)Google Scholar
  14. Saez, D., Ballester, V.J.: Phys. Lett. A113, 467 (1985)ADSGoogle Scholar
  15. Sen, D.K.: Z. Phys. 149, 311 (1957)zbMATHCrossRefGoogle Scholar
  16. Sen, D.K., Dunn, K.A.: J. Math. Phys. 12, 578 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  17. Wesson, P.S.: Gravity, Particles and Astrophysics, D. Reidel Publ. Co. Dordrecht, Holland (1980)Google Scholar
  18. Will, C.M.: Phys. Rep. 113, 345 (1984)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsMaharaj Vijayaram Gajapathi Raj Engineering CollegeChintalavalasaIndia
  2. 2.Department of MathematicsGMR Institute of TechnologyRajamIndia
  3. 3.Department of MathematicsAmravathi UniversityAmravathiIndia

Personalised recommendations