Astrophysics and Space Science

, Volume 306, Issue 3, pp 171–174 | Cite as

A Cosmological Model with Negative Constant Deceleration Parameter in a Scalar-Tensor Theory

  • D. R. K. Reddy
  • M. V. Subba Rao
  • G. Koteswara Rao
Original Article


With the help of a special law of variation for Hubble's parameter presented by Bermann [Nuovo Cimento B (1983), 74, 182], a cosmological model with negative constant deceleration parameter is obtained in the framework of Saez-Ballester [Phys. Lett (1985), Al 13, 467] scalar -- tensor theory of gravitation. Some physical and kinematical properties of the model are, also, discussed.


Scalar-tensor theory Constant deceleration parameter Cosmological model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bermann, M.S.: Nuovo Comento 74B, 182 (1983)ADSGoogle Scholar
  2. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)CrossRefADSMathSciNetGoogle Scholar
  3. Halford, W.D.: Aust. J. Phys. 23, 863 (1970)ADSGoogle Scholar
  4. Lyra, G.: Math. Z. 54, 52 (1951)CrossRefMathSciNetGoogle Scholar
  5. Nordtvedt, K., Jr.: Astrophys, J. 161, 1069 (1970)CrossRefADSMathSciNetGoogle Scholar
  6. Rahaman, F., Bera, J.: Int. J. Mod. Phys. D10, 729 (2001)ADSGoogle Scholar
  7. Rahaman, F., Bera, J.: Astrophys. Space Sci. 281, 595 (2002)CrossRefADSMathSciNetGoogle Scholar
  8. Rahaman, F., Chakraborty, S., Bera, J.: Int. J. Mod. Phys. D11, 1501 (2002)ADSMathSciNetGoogle Scholar
  9. Rahaman, F. Begum, N., Bag, G., Bhui, B.C.: Astrophys. Space Sci. 299, 211 (2005)CrossRefADSGoogle Scholar
  10. Rahaman, F., Das, S., Begum, N., Hossain, M.: Pramana-J. Phys. 61, 153 (2003)ADSGoogle Scholar
  11. Rahaman, F., Chakraborty, S., Begum, N., Hossain, M., Kalam, M.: Fizika B11, 57 (2002)ADSGoogle Scholar
  12. Reddy, D.R.K., Venkateswarlu, R.: Astrophys. Space Sci. 136, 191 (1987)CrossRefADSMathSciNetGoogle Scholar
  13. Saez, D., Ballester, V.J.: Phys. Lett. A113, 467 (1985)ADSGoogle Scholar
  14. Saez, D.: A Simple coupling with cosmological implications, (a preprint) (1985)Google Scholar
  15. Sen, D.K., Dunn, K.A.: J. Math. Phys. 12, 578 (1971)CrossRefMathSciNetGoogle Scholar
  16. Shri Ram, Singh, J.K.: Astrophys. Space Sci. 234, 325 (1995)CrossRefADSMathSciNetGoogle Scholar
  17. Shri Ram, Tiwari, S.K.: Astrophys. Space Sci. 277, 461(1998)Google Scholar
  18. Singh, T., Agrawal, K.: Astrophys. Space Sci. 182, 289 (1991)CrossRefADSMathSciNetGoogle Scholar
  19. Soleng, H.H.: Gen. Relativ. Gravitation 19, 1213 (1987)CrossRefMathSciNetGoogle Scholar
  20. Songh, T., Rai, L.N.: Gen. Relativ. Gravitation 15, 875(1983)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • D. R. K. Reddy
    • 1
  • M. V. Subba Rao
    • 2
  • G. Koteswara Rao
    • 2
  1. 1.Department of MathematicsMaharaja Vijayaram Gajapathi Raj College of EngineeringVizianagaramIndia
  2. 2.Department of MathematicsNagarjuna UniversityGunturIndia

Personalised recommendations