Advertisement

Archives of Sexual Behavior

, Volume 48, Issue 1, pp 113–130 | Cite as

A Latent Profile Analysis of Bisexual Identity: Evidence of Within-Group Diversity

  • Andrew Young ChoiEmail author
  • Karen Nylund-Gibson
  • Tania Israel
  • Stephanie E. A. Mendez
Special Section: Bisexual Health

Abstract

Bisexual people experience unique psychosocial vulnerabilities and their mental health needs and social identity remain underserved and understudied, respectively. We report results from a latent profile analysis where we identified a preliminary typology of bisexual identity subgroups and its association with demographic and mental health variables. Bisexual+ adults (N = 292) residing in the U.S. were recruited from Amazon Mechanical Turk and administered a demographic survey, indicators of bisexual identity, and measures of internalizing symptoms and self-esteem. Joint consideration of statistical and substantive criteria in the modeling process yielded a well-differentiated and qualitatively distinctive three-profile solution comprised of Affirmative (e.g., having a positive orientation towards one’s bisexuality), Vigilant (e.g., being significantly concerned about others’ reactions to one’s bisexuality), and Ambivalent (e.g., endorsing mixed but generally negative attitudes and beliefs about one’s bisexuality) profiles of bisexual identity. Auxiliary analyses revealed conceptually and statistically significant associations among profile membership, demographic covariates, and mental health outcomes. Some key findings included that compared to the Affirmative profile, men and people of color were overrepresented in the Ambivalent profile, whereas men were overrepresented in the Vigilant profile. Bisexuals with a Vigilant profile displayed the poorest mental health constellation. Our findings highlight the categorically heterogeneous nature of bisexual identity, support the relevance of social identity to mental health among bisexuals, and represent the first attempt to model bisexual identity using mixture techniques. Future studies should consider larger and more demographically diverse samples, address replicability and generalizability, examine additional auxiliary variables, and investigate longitudinal developments in profiles.

Keywords

Bisexuality Bisexual identity Latent profile analysis Mixture modeling Typology Sexual orientation 

Notes

Acknowledgements

Data collection for this article was financially supported by the University of California, Santa Barbara Academic Senate Grant awarded to Tania Israel. We thank Andrew Maul, Matthew Quirk, and the University of California, Santa Barbara Latent Variable Research Group for their helpful comments on earlier versions of this article. Findings from this article were previously presented at the 10th Biennial Meeting of the National Multicultural Conference and Summit.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy, White women. Health Psychology, 19(6), 586–592.  https://doi.org/10.1037/0278-6133.19.6.586.CrossRefPubMedGoogle Scholar
  2. American Psychological Association. (2012). Guidelines for psychological practice with lesbian, gay, and bisexual clients. American Psychologist, 67(1), 10–42.  https://doi.org/10.1037/a0024659.CrossRefGoogle Scholar
  3. Andresen, E. M., Malmgren, J. A., Carter, W. B., & Patrick, D. L. (1994). Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). American Journal of Preventive Medicine, 10(2), 77–84.CrossRefGoogle Scholar
  4. Arditte, K., Çek, D., Shaw, A. M., & Timpano, K. R. (2016). The importance of assessing clinical phenomena in Mechanical Turk Research. Psychological Assessment, 28(6), 684–691.  https://doi.org/10.1037/pas0000217.CrossRefPubMedGoogle Scholar
  5. Asparouhov, T., Hamaker, E. L., & Muthén, B. (2017). Dynamic latent class analysis. Structural Equation Modeling, 24(2), 257–269.  https://doi.org/10.1080/10705511.2016.1253479.CrossRefGoogle Scholar
  6. Asparouhov, T., & Muthén, B. O. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling, 21(3), 329–341.  https://doi.org/10.1080/10705511.2014.915181.CrossRefGoogle Scholar
  7. Aust, F., Diedenhofen, B., Ullrich, S., & Musch, J. (2013). Seriousness checks are useful to improve data validity in online research. Behavior Research Methods, 45(2), 527–535.  https://doi.org/10.3758/s13428-012-0265-2.CrossRefPubMedGoogle Scholar
  8. Baldwin, A., Dodge, B., Schick, V., Hubach, R. D., Bowling, J., Malebranche, D., … Fortenberry, J. D. (2015). Sexual self-identification among behaviorally bisexual men in the Midwestern United States. Archives of Sexual Behavior, 44(7), 2015–2026.  https://doi.org/10.1007/s10508-014-0376-1.CrossRefPubMedGoogle Scholar
  9. Balsam, K. F., & Mohr, J. J. (2007). Adaptation to sexual orientation stigma: A comparison of bisexual and lesbian/gay adults. Journal of Counseling Psychology, 54(3), 306–319.  https://doi.org/10.1037/0022-0167.54.3.306.CrossRefGoogle Scholar
  10. Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8(3), 338–363.CrossRefGoogle Scholar
  11. Björgvinsson, T., Kertz, S. J., Bigda-Peyton, J. S., McCoy, K. L., & Aderka, I. M. (2013). Psychometric properties of the CES-D-10 in a psychiatric sample. Assessment, 20(4), 429–436.  https://doi.org/10.1177/1073191113481998.CrossRefPubMedGoogle Scholar
  12. Bohannon, J. (2016). Mechanical Turk upends social sciences: Growing pains arise for researchers using online platform. Science, 352(6291), 1263–1264.CrossRefGoogle Scholar
  13. Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27.  https://doi.org/10.2307/25791751.CrossRefGoogle Scholar
  14. Bostwick, W. B., & Hequembourg, A. L. (2013). Minding the noise: Conducting health research among bisexual populations and beyond. Journal of Homosexuality, 60(4), 655–661.  https://doi.org/10.1080/00918369.2013.760370.CrossRefPubMedGoogle Scholar
  15. Bostwick, W. B., & Hequembourg, A. (2014). ‘Just a little hint’: Bisexual-specific microaggressions and their connection to epistemic injustices. Culture, Health and Sexuality, 16(5), 488–503.  https://doi.org/10.1080/13691058.2014.889754.CrossRefPubMedGoogle Scholar
  16. Brewster, M. E., & Moradi, B. (2010a). Perceived experiences of anti-bisexual prejudice: Instrument development and evaluation. Journal of Counseling Psychology, 57(4), 451–468.  https://doi.org/10.1037/a0021116.CrossRefGoogle Scholar
  17. Brewster, M. E., & Moradi, B. (2010b). Personal, relational and community aspects of bisexual identity in emerging, early and middle adult cohorts. Journal of Bisexuality, 10(4), 404–428.  https://doi.org/10.1080/15299716.2010.521056.CrossRefGoogle Scholar
  18. Brown, T. (2002). A proposed model of bisexual identity development that elaborates on experiential differences of women and men. Journal of Bisexuality, 2(4), 67–91.  https://doi.org/10.1300/J159v02n04_05.CrossRefGoogle Scholar
  19. Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York, NY: The Guilford Press.Google Scholar
  20. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5.  https://doi.org/10.1177/1745691610393980.CrossRefPubMedGoogle Scholar
  21. Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and data gathered via Amazon’s MTurk, social media, and face-to-face behavioral testing. Computers in Human Behavior, 29, 2156–2160.  https://doi.org/10.1016/j.chb.2013.05.009.CrossRefGoogle Scholar
  22. Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13(2), 195–212.  https://doi.org/10.1007/BF01246098.CrossRefGoogle Scholar
  23. Chen, F., Bollen, K., Paxton, P., Curran, P. J., & Kirby, J. B. (2001). Improper solutions in structural equation models: Causes, consequences, and strategies. Sociological Methods and Research, 29(4), 468–508.  https://doi.org/10.1177/0049124101029004003.CrossRefGoogle Scholar
  24. Choi, A. Y., & Israel, T. (2016). Centralizing the psychology of sexual minority Asian and Pacific Islander Americans. Psychology of Sexual Orientation and Gender Diversity, 3(3), 345–356.  https://doi.org/10.1037/sgd0000184.CrossRefGoogle Scholar
  25. Clark, S. L., & Muthén, B. O. (2009). Relating latent class analysis results to variables not included in the analysis. Unpublished manuscript.Google Scholar
  26. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  27. Cole, E. R. (2009). Intersectionality and research in psychology. American Psychologist, 64(3), 170–180.  https://doi.org/10.1037/a0014564.CrossRefPubMedGoogle Scholar
  28. Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27(1), 131–157.  https://doi.org/10.1207/s15327906mbr2701_8.CrossRefGoogle Scholar
  29. Copen, C. E., Chandra, A., & Febo-Vazquez, I. (2016). Sexual behavior, sexual attraction, and sexual orientation among adults aged 18–44 in the United States: Data from the 2011–2013 National Survey of Family Growth. National Health Statistics Reports, 88, 1–14.Google Scholar
  30. Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation. Psychological Methods, 18(2), 186–219.  https://doi.org/10.1037/a0031609.CrossRefPubMedGoogle Scholar
  31. Diamond, L. M., Dickenson, J. A., & Blair, K. L. (2017). Stability of sexual attractions across different timescales: The roles of bisexuality and gender. Archives of Sexual Behavior, 46(1), 193–204.  https://doi.org/10.1007/s10508-016-0860-x.CrossRefPubMedGoogle Scholar
  32. Dobinson, C., MacDonnell, J., Hampson, E., Clipsham, J., & Chow, K. (2005). Improving the access and quality of public health services for bisexuals. Journal of Bisexuality, 5(1), 39–78.  https://doi.org/10.1300/J159v05n01_05.CrossRefGoogle Scholar
  33. Dodge, B., Reece, M., & Gebhard, P. H. (2008). Kinsey and beyond: Past, present, and future considerations for research on male bisexuality. Journal of Bisexuality, 8(3–4), 175–189.  https://doi.org/10.1080/15299710802501462.CrossRefGoogle Scholar
  34. Dodge, B., Rosenberger, J. G., Schick, V., Reece, M., Herbenick, D., & Novak, D. S. (2012). Beyond “risk”: Exploring sexuality among diverse typologies of bisexual men in the United States. Journal of Bisexuality, 12(1), 13–34.  https://doi.org/10.1080/15299716.2012.645696.CrossRefGoogle Scholar
  35. Eisner, S. (2013). Bi: Notes for a bisexual revolution. Berkeley, CA: Seal Press.Google Scholar
  36. Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.Google Scholar
  37. Feinstein, B. A., & Dyar, C. (2017). Bisexuality, minority stress, and health. Current Sexual Health Reports, 9, 42–49.CrossRefGoogle Scholar
  38. Feinstein, B. A., Dyar, C., & London, B. (2017). Are outness and community involvement risk or protective factors for alcohol and drug abuse among sexual minority women? Archives of Sexual Behavior, 46(5), 1411–1423.  https://doi.org/10.1007/s10508-016-0790-7.CrossRefPubMedGoogle Scholar
  39. Finch, W. H., & Bronk, K. C. (2011). Conducting confirmatory latent class analysis using Mplus. Structural Equation Modeling, 18(1), 132–151.CrossRefGoogle Scholar
  40. Flanders, C. E., Dobinson, C., & Logie, C. (2015). “I’m never really my full self”: Young bisexual women’s perceptions of their mental health. Journal of Bisexuality, 15(4), 454–480.  https://doi.org/10.1080/15299716.2015.1079288.CrossRefGoogle Scholar
  41. Flanders, C. E., LeBreton, M. E., Robinson, M., Bian, J., & Caravaca-Morera, J. A. (2017a). Defining bisexuality: Young bisexual and pansexual people’s voices. Journal of Bisexuality, 17(1), 39–57.  https://doi.org/10.1080/15299716.2016.1227016.CrossRefGoogle Scholar
  42. Flanders, C. E., Robinson, M., Legge, M. M., & Tarasoff, L. A. (2016). Negative identity experiences of bisexual and other non-monosexual people: A qualitative report. Journal of Gay and Lesbian Mental Health, 20(2), 152–172.  https://doi.org/10.1080/19359705.2015.1108257.CrossRefGoogle Scholar
  43. Flanders, C. E., Tarasoff, L. A., Legge, M. M., Robinson, M., & Gos, G. (2017b). Positive identity experiences of young bisexual and other nonmonosexual people: A qualitative inquiry. Journal of Homosexuality, 64(8), 1014–1032.  https://doi.org/10.1080/00918369.2016.1236592.CrossRefPubMedGoogle Scholar
  44. Friedman, M. R., Dodge, B., Schick, V., Herbenick, D., Hubach, R. D., Bowling, J., … Reece, M. (2014a). From bias to bisexual health disparities: Attitudes toward bisexual men and women in the United States. LGBT Health, 1(4), 309–318.  https://doi.org/10.1089/lgbt.2014.0005.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Friedman, M. R., Wei, C., Klem, M. L., Silvestre, A. J., Markovic, N., & Stall, R. D. (2014b). HIV infection and sexual risk among men who have sex with men and women (MSMW): A systematic review and meta-analysis. PLoS ONE, 9(1), 1–12.  https://doi.org/10.1371/journal.pone.0087139.CrossRefGoogle Scholar
  46. Galupo, M. P., Davis, K. S., Grynkiewicz, A. L., & Mitchell, R. C. (2014). Conceptualization of sexual orientation identity among sexual minorities: Patterns across sexual and gender identity. Journal of Bisexuality, 14(3–4), 433–456.  https://doi.org/10.1080/15299716.2014.933466.CrossRefGoogle Scholar
  47. Galupo, M. P., Mitchell, R. C., & Davis, K. S. (2015). Sexual minority self-identification: Multiple identities and complexity. Psychology of Sexual Orientation and Gender Diversity, 2(4), 355–364.  https://doi.org/10.1037/sgd0000131.CrossRefGoogle Scholar
  48. Galupo, M. P., Ramirez, J. L., & Pulice-Farrow, L. (2017). “Regardless of their gender”: Descriptions of sexual identity among bisexual, pansexual, and queer identified individuals. Journal of Bisexuality, 17(1), 108–124.  https://doi.org/10.1080/15299716.2016.1228491.CrossRefGoogle Scholar
  49. Gates, G. J. (2011). How many people are lesbian, gay, bisexual, and transgender?. Los Angeles, CA: The Williams Institute.Google Scholar
  50. Göritz, A. S. (2006). Incentives in web studies: Methodological issues and a review. International Journal of Internet Science, 1, 58–70.Google Scholar
  51. Green, K. E., & Feinstein, B. A. (2012). Substance use in lesbian, gay, and bisexual populations: An update on empirical research and implications for treatment. Psychology of Addictive Behaviors, 26(2), 265–278.  https://doi.org/10.1037/a0025424.CrossRefPubMedGoogle Scholar
  52. Hatzenbuehler, M. L. (2009). How does sexual minority stigma “get under the skin”? A psychological mediation framework. Psychological Bulletin, 135(5), 707–730.  https://doi.org/10.1037/a0016441.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hatzenbuehler, M. L. (2016). Structural stigma: Research evidence and implications for psychological science. American Psychologist, 71(8), 742–751.  https://doi.org/10.1037/amp0000068.CrossRefPubMedGoogle Scholar
  54. Helms, J. E. (1995). An update of Helms’s White and people of color racial identity models. In J. G. Ponterotto, J. M. Casas, L. A. Suzuki, & C. M. Alexander (Eds.), Handbook of multicultural counseling (pp. 181–198). Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
  55. Huang, Y.-P., Brewster, M. E., Moradi, B., Goodman, M. B., Wiseman, M. C., & Martin, A. (2010). Content analysis of literature about LGB people of color: 1998–2007. The Counseling Psychologist, 38(3), 363–396.  https://doi.org/10.1177/0011000009335255.CrossRefGoogle Scholar
  56. Huff, C., & Tingley, D. (2015). “Who are these people?” Evaluating the demographic characteristics and political preferences of MTurk survey respondents. Research and Politics.  https://doi.org/10.1177/2053168015604648.CrossRefGoogle Scholar
  57. Hunter, M. A. (2010). All the gays are White and all the Blacks are straight: Black gay men, identity, and community. Sexuality Research and Social Policy, 7(2), 81–92.  https://doi.org/10.1007/s13178-010-0011-4.CrossRefGoogle Scholar
  58. Institute of Medicine. (2011). The health of lesbian, gay, bisexual, and transgender people: Building a foundation for better understanding. Washington, DC: The National Academies Press.Google Scholar
  59. Israel, T., Lin, Y.-J., Goodman, J. A., Matsuno, E., Choi, A. Y., Kary, K. G., et al. (2016). Reducing LGBTQ stigma through online interventions. In H. M. Levitt and B. L. Velez (Co-chairs), Psychotherapy and intervention research with LGBTQ populations. Symposium conducted at the meeting of the American Psychological Association, Denver, CO.Google Scholar
  60. Israel, T., & Mohr, J. J. (2004). Attitudes toward bisexual women and men. Journal of Bisexuality, 4(1–2), 117–134.  https://doi.org/10.1300/J159v04n01_09.CrossRefGoogle Scholar
  61. Jackson, S. D., & Mohr, J. J. (2016). Conceptualizing the closet: Differentiating stigma concealment and nondisclosure processes. Psychology of Sexual Orientation and Gender Diversity, 3(1), 80–92.  https://doi.org/10.1037/sgd0000147.CrossRefGoogle Scholar
  62. Jang, Y., Park, N. S., Chiriboga, D. A., & Kim, M. T. (2017). Latent profiles of acculturation and their implications for health: A study with Asian Americans in central Texas. Asian American Journal of Psychology.  https://doi.org/10.1037/aap0000080.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jorm, A. F., Korten, A. E., Rodgers, B., Jacomb, P. A., & Christensen, H. (2002). Sexual orientation and mental health: Results from a community survey of young and middle-aged adults. British Journal of Psychiatry, 180(5), 423–427.  https://doi.org/10.1192/bjp.180.5.423.CrossRefPubMedGoogle Scholar
  64. Kaestle, C. E., & Ivory, A. H. (2012). A forgotten sexuality: Content analysis of bisexuality in the medical literature over two decades. Journal of Bisexuality, 12(1), 35–48.  https://doi.org/10.1080/15299716.2012.645701.CrossRefGoogle Scholar
  65. Kertzner, R. M., Meyer, I. H., Frost, D. M., & Stirratt, M. J. (2009). Social and psychological well-being in lesbians, gay men, and bisexuals: The effects of race, gender, age, and sexual identity. American Journal of Orthopsychiatry, 79(4), 500–510.  https://doi.org/10.1037/a0016848.CrossRefPubMedGoogle Scholar
  66. Klein, F. (2014). Are you sure you’re heterosexual? Or homosexual? Or even bisexual? Journal of Bisexuality, 14(3–4), 341–346.  https://doi.org/10.1080/15299716.2014.953282.CrossRefGoogle Scholar
  67. Konstan, J. A., Rosser, B. R. S., Ross, M. W., Stanton, J., & Edwards, W. M. (2005). The story of subject naught: A cautionary but optimistic tale of internet survey research. Journal of Computer-Mediated Communication.  https://doi.org/10.1111/j.1083-6101.2005.tb00248.x.CrossRefGoogle Scholar
  68. Kulis, S. S., Robbins, D. E., Baker, T. M., Denetsosie, S., & Deschine Parkhurst, N. A. (2016). A latent class analysis of urban American Indian youth identities. Cultural Diversity and Ethnic Minority Psychology, 22(2), 215–228.  https://doi.org/10.1037/cdp0000024.CrossRefPubMedGoogle Scholar
  69. Kwon, P. (2013). Resilience in lesbian, gay, and bisexual individuals. Personality and Social Psychology Review, 17(4), 371–383.  https://doi.org/10.1177/1088868313490248.CrossRefPubMedGoogle Scholar
  70. MacKay, J., Robinson, M., Pinder, S., & Ross, L. E. (2017). A grounded theory of bisexual individuals’ experiences of help seeking. American Journal of Orthopsychiatry, 87(1), 52–61.  https://doi.org/10.1037/ort0000184.CrossRefPubMedGoogle Scholar
  71. Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The Oxford handbook of quantitative methods (Vol. 2: Statistical analysis) (pp. 551–611). New York, NY: Oxford University Press.Google Scholar
  72. Masyn, K. E. (2017). Measurement invariance and differential item functioning in latent class analysis with stepwise multiple indicator multiple cause modeling. Structural Equation Modeling, 24(2), 180–197.  https://doi.org/10.1080/10705511.2016.1254049.CrossRefGoogle Scholar
  73. McCormack, M., Wignall, L., & Anderson, E. (2015). Identities and identifications: Changes in metropolitan bisexual men’s attitudes and experiences. Journal of Bisexuality, 15(1), 3–20.  https://doi.org/10.1080/15299716.2014.984372.CrossRefGoogle Scholar
  74. McLachlan, G., & Peel, D. (2000). Finite mixture modeling. New York, NY: Wiley.CrossRefGoogle Scholar
  75. McLean, K. (2007). Hiding in the closet?: Bisexuals, coming out and the disclosure imperative. Journal of Sociology, 43(2), 151–166.  https://doi.org/10.1177/1440783307076893.CrossRefGoogle Scholar
  76. Mereish, E. H., Katz-Wise, S. L., & Woulfe, J. (2017). Bisexual-specific minority stressors, psychological distress, and suicidality in bisexual individuals: The mediating role of loneliness. Prevention Science, 18(6), 716–725.  https://doi.org/10.1007/s11121-017-0804-2.CrossRefPubMedGoogle Scholar
  77. Merz, E. L., & Roesch, S. C. (2011). A latent profile analysis of the Five Factor Model of personality: Modeling trait interactions. Personality and Individual Differences, 51(8), 915–919.  https://doi.org/10.1016/j.paid.2011.07.022.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Meyer, I. H. (2003). Prejudice, social stress, and mental health in lesbian, gay, and bisexual populations: Conceptual issues and research evidence. Psychological Bulletin, 129(5), 674–697.  https://doi.org/10.1037/0033-2909.129.5.674.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Meyer, I. H. (2010). Identity, stress, and resilience in lesbians, gay men, and bisexuals of color. The Counseling Psychologist, 38(3), 442–454.  https://doi.org/10.1177/0011000009351601.CrossRefGoogle Scholar
  80. Meyer, I. H. (2014). Minority stress and positive psychology: Convergences and divergences to understanding LGBT health. Psychology of Sexual Orientation and Gender Diversity, 1(4), 348–349.  https://doi.org/10.1037/sgd0000070.CrossRefGoogle Scholar
  81. Mitchell, R. C., Davis, K. S., & Galupo, M. P. (2015). Comparing perceived experiences of prejudice among self-identified plurisexual individuals. Psychology and Sexuality, 6(3), 245–257.  https://doi.org/10.1080/19419899.2014.940372.CrossRefGoogle Scholar
  82. Mohr, J. J., Jackson, S. D., & Sheets, R. L. (2016). Sexual orientation self-presentation among bisexual-identified women and men: Patterns and predictors. Archives of Sexual Behavior.  https://doi.org/10.1007/s10508-016-0808-1.CrossRefPubMedGoogle Scholar
  83. Mohr, J. J., & Kendra, M. S. (2011). Revision and extension of a multidimensional measure of sexual minority identity: The Lesbian, Gay, and Bisexual Identity Scale. Journal of Counseling Psychology, 58(2), 234–245.  https://doi.org/10.1037/a0022858.CrossRefPubMedGoogle Scholar
  84. Morin, A. J. S., Meyer, J. P., Creusier, J., & Biétry, F. (2016). Multiple-group analysis of similarity in latent profile solutions. Organizational Research Methods, 19(2), 231–254.  https://doi.org/10.1177/1094428115621148.CrossRefGoogle Scholar
  85. Morovati, D. (2014). The intersection of sample size, number of indicators, and class enumeration in LCA: A Monte Carlo study. Unpublished doctoral dissertation, University of California, Santa Barbara.Google Scholar
  86. Muthén, B. O. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Methods, 8(3), 369–377.CrossRefGoogle Scholar
  87. Nagin, D. S. (2005). Group-based modeling of development. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  88. Nylund, K. L. (2007). Latent transition analysis: Modeling extensions and an application to peer victimization. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
  89. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007a). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535–569.  https://doi.org/10.1080/10705510701575396.CrossRefGoogle Scholar
  90. Nylund, K. L., Bellmore, A., Nishina, A., & Graham, S. (2007b). Subtypes, severity, and structural stability of peer victimization: What does latent class analysis say? Child Development, 78(6), 1706–1722.CrossRefGoogle Scholar
  91. Nylund-Gibson, K., & Hart, S. R. (2014). Latent class analysis in prevention science. In Z. Sloboda & H. Petras (Eds.), Defining prevention science (pp. 498–511). New York, NY: Springer.Google Scholar
  92. Nylund-Gibson, K., & Masyn, K. E. (2016). Covariates and mixture modeling: Results of a simulation study exploring the impact of misspecified effects on class enumeration. Structural Equation Modeling, 23(6), 782–797.  https://doi.org/10.1080/10705511.2016.1221313.CrossRefGoogle Scholar
  93. Ochs, R. (2005). What is bisexuality? In R. Ochs & S. E. Rowley (Eds.), Getting bi: Voices of bisexuals around the world (pp. 7–15). Boston, MA: Bisexual Resource Center.Google Scholar
  94. Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks: Detecting satisficing to increase statistical power. Journal of Experimental Social Psychology, 45(4), 867–872.  https://doi.org/10.1016/j.jesp.2009.03.009.CrossRefGoogle Scholar
  95. Pachankis, J. E. (2007). The psychological implications of concealing a stigma: A cognitive-affective-behavioral model. Psychological Bulletin, 133(2), 328–345.  https://doi.org/10.1037/0033-2909.133.2.328.CrossRefPubMedGoogle Scholar
  96. Parent, M. C., DeBlaere, C., & Moradi, B. (2013). Approaches to research on intersectionality: Perspectives on gender, LGBT, and racial/ethnic identities. Sex Roles, 68(11–12), 639–645.  https://doi.org/10.1007/s11199-013-0283-2.CrossRefGoogle Scholar
  97. Paul, R., Smith, N. G., Mohr, J. J., & Ross, L. E. (2014). Measuring dimensions of bisexual identity: Initial development of the Bisexual Identity Inventory. Psychology of Sexual Orientation and Gender Diversity, 1(4), 452–460.  https://doi.org/10.1037/sgd0000069.CrossRefGoogle Scholar
  98. Persson, T. J., & Pfaus, J. G. (2015). Bisexuality and mental health: Future research directions. Journal of Bisexuality, 15(1), 82–98.  https://doi.org/10.1080/15299716.2014.994694.CrossRefGoogle Scholar
  99. Peugh, J., & Fan, X. (2013). Modeling unobserved heterogeneity using latent profile analysis: A Monte Carlo simulation. Structural Equation Modeling, 20(4), 616–639.  https://doi.org/10.1080/10705511.2013.824780.CrossRefGoogle Scholar
  100. Pew Research Center. (2013). A survey of LGBT Americans. Washington, DC: Pew Research Center.Google Scholar
  101. Ponterotto, J. G., Casas, J. M., Suzuki, L. M., & Alexander, C. M. (Eds.). (2010). Handbook of multicultural counseling (3rd ed.). Thousand Oaks, CA: Sage.Google Scholar
  102. Quirk, M., Nylund-Gibson, K., & Furlong, M. (2013). Exploring patterns of Latino/a children’s school readiness at kindergarten entry and their relations with Grade 2 achievement. Early Childhood Research Quarterly, 28(2), 437–449.CrossRefGoogle Scholar
  103. Riggle, E. D. B., Mohr, J. J., Rostosky, S. S., Fingerhut, A. W., & Balsam, K. F. (2014). A multifactor Lesbian, Gay, and Bisexual Positive Identity Measure (LGB-PIM). Psychology of Sexual Orientation and Gender Diversity, 1(4), 398–411.  https://doi.org/10.1037/sgd0000057.CrossRefGoogle Scholar
  104. Roberts, T. S., Horne, S. G., & Hoyt, W. T. (2015). Between a gay and a straight place: Bisexual individuals’ experiences with monosexism. Journal of Bisexuality, 15(4), 554–569.  https://doi.org/10.1080/15299716.2015.1111183.CrossRefGoogle Scholar
  105. Rosenberg, M. (1965). Society and the adolescent self-image. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  106. Ross, L. E., Dobinson, C., & Eady, A. (2010). Perceived determinants of mental health for bisexual people: A qualitative examination. American Journal of Public Health, 100(3), 496–502.  https://doi.org/10.2105/AJPH.2008.156307.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Rostosky, S. S., Riggle, E. D. B., Pascale-Hague, D., & McCants, L. E. (2010). The positive aspects of a bisexual self-identification. Psychology and Sexuality, 1(2), 131–144.  https://doi.org/10.1080/19419899.2010.484595.CrossRefGoogle Scholar
  108. Rust, P. C. R. (2000). Two many and not enough: The meanings of bisexual identities. Journal of Bisexuality, 1(1), 31–68.  https://doi.org/10.1300/J159v01n01_04.CrossRefGoogle Scholar
  109. Rust, P. C. R. (2002). Bisexuality: The state of the union. Annual Review of Sex Research, 13(1), 180–240.  https://doi.org/10.1080/10532528.2002.10559805.CrossRefPubMedGoogle Scholar
  110. Sandfort, T. G. M., & Dodge, B. (2008). “…and then there was the down low”: Introduction to Black and Latino male bisexualities. Archives of Sexual Behavior, 37(5), 675–682.  https://doi.org/10.1007/s10508-008-9359-4.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sarno, E. L., Mohr, J. J., Jackson, S. D., & Fassinger, R. E. (2015). When identities collide: Conflicts in allegiances among LGB people of color. Cultural Diversity and Ethnic Minority Psychology, 21(4), 550–559.  https://doi.org/10.1037/cdp0000026.CrossRefPubMedGoogle Scholar
  112. Sinclair, S. J., Blais, M. A., Gansler, D. A., Sandberg, E., Bistis, K., & LoCicero, A. (2010). Psychometric properties of the Rosenberg Self-Esteem Scale: Overall and across demographic groups living within the United States. Evaluation and the Health Professions, 33(1), 56–80.  https://doi.org/10.1177/0163278709356187.CrossRefPubMedGoogle Scholar
  113. Singer, E., & Ye, C. (2013). The use and effects of incentives in surveys. Annals of the American Academy of Political and Social Science, 645(1), 112–141.  https://doi.org/10.1177/0002716212458082.CrossRefGoogle Scholar
  114. Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A brief measure for assessing Generalized Anxiety Disorder: The GAD-7. Archives of Internal Medicine, 166(10), 1092–1097.  https://doi.org/10.1001/archinte.166.10.1092.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Tein, J.-Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis. Structural Equation Modeling, 20(4), 640–657.CrossRefGoogle Scholar
  116. Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317–341). Charlotte, NC: Information Age Publishing.Google Scholar
  117. Toomey, R. B., Huynh, V. W., Jones, S. K., Lee, S., & Revels-Macalinao, M. (2017). Sexual minority youth of color: A content analysis and critical review of the literature. Journal of Gay and Lesbian Mental Health, 21(1), 3–31.  https://doi.org/10.1080/19359705.2016.1217499.CrossRefPubMedGoogle Scholar
  118. Tueller, S., & Lubke, G. H. (2010). Evaluation of structural equation mixture models: Parameter estimates and correct class assignment. Structural Equation Modeling, 17(2), 165–192.  https://doi.org/10.1080/10705511003659318.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469.  https://doi.org/10.2307/25792024.CrossRefGoogle Scholar
  120. Weinberg, M. S., Williams, C. J., & Pryor, D. W. (1994). Dual attraction: Understanding bisexuality. New York, NY: Oxford University Press.Google Scholar
  121. Weinrich, J. D., & Klein, F. (2002). Bi-gay, bi-straight, and bi-bi. Journal of Bisexuality, 2(4), 109–139.  https://doi.org/10.1300/J159v02n04_07.CrossRefGoogle Scholar
  122. Wong, Y. J., Nguyen, C. P., Wang, S.-Y., Chen, W., Steinfeldt, J. A., & Kim, B. S. K. (2012a). A latent profile analysis of Asian American men’s and women’s adherence to cultural values. Cultural Diversity and Ethnic Minority Psychology, 18(3), 258–267.  https://doi.org/10.1037/a0028423.CrossRefPubMedGoogle Scholar
  123. Wong, Y. J., Owen, J., & Shea, M. (2012b). A latent class regression analysis of men’s conformity to masculine norms and psychological distress. Journal of Counseling Psychology, 59(1), 176–183.  https://doi.org/10.1037/a0026206.CrossRefPubMedGoogle Scholar
  124. Worthington, R. L., Navarro, R. L., Savoy, H. B., & Hampton, D. (2008). Development, reliability, and validity of the Measure of Sexual Identity Exploration and Commitment (MOSIEC). Developmental Psychology, 44(1), 22–33.  https://doi.org/10.1037/0012-1649.44.1.22.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrew Young Choi
    • 1
    Email author
  • Karen Nylund-Gibson
    • 2
  • Tania Israel
    • 1
  • Stephanie E. A. Mendez
    • 1
  1. 1.Department of Counseling, Clinical, and School PsychologyUniversity of California, Santa BarbaraSanta BarbaraUSA
  2. 2.Department of EducationUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations