Archives of Sexual Behavior

, Volume 46, Issue 8, pp 2289–2299 | Cite as

Differences in Neural Response to Romantic Stimuli in Monogamous and Non-Monogamous Men

  • Lisa Dawn HamiltonEmail author
  • Cindy M. Meston
Original Paper


In non-human animal research, studies comparing socially monogamous and promiscuous species of voles (Microtus) have identified some key neural differences related to monogamy and non-monogamy. Specifically, densities of the vasopressin V1a receptor and dopamine D2 receptors in subcortical reward-related and limbic areas of the brain have been linked to monogamous behavior in prairie voles (Microtus ochrogaster). Similar brain areas have been shown to be correlated with feelings of romantic love in monogamously pair-bonded humans. Humans vary in the degree to which they engage in (non-)monogamous behaviors. The present study examined the differences in neural activation in response to sexual and romantic stimuli in monogamous (n = 10) and non-monogamous (n = 10) men. Results indicated that monogamous men showed more reward-related neural activity when viewing romantic pictures compared to non-monogamous men. Areas with increased activation for monogamous men were all in the right hemisphere and included the thalamus, accumbens, striatum, pallidum, insula, and orbitofrontal cortex. There were no significant differences between groups in activation to sexual stimuli. These results demonstrate that the neural processing of romantic images is different for monogamous and non-monogamous men. There is some overlap in the neural areas showing increased activation in monogamous men in the present study and the neural areas that show differences in the vole models of monogamy and affiliation. Future research will be needed to clarify whether similar factors are contributing to the neural differences seen in monogamous and non-monogamous humans and voles.


fMRI Monogamy Non-monogamy Sexuality: visual sexual stimuli Romantic love 



The authors would like to thank the University of Texas Imaging Research Center for granting us scanner time for this project. We would also like to thank our research assistants Luke Thorstensen, Brad Schumate, E. Eve Andrews, and Taylor Anne Morgan for assistance with data collection and participant recruitment, David Schnyer and Jennifer Pacheco for technical assistance with data collection and analysis, and Heather Rupp for providing the sexual images. The first author was supported by a doctoral fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. Acevedo, B. P., Aron, A., Fisher, H. E., & Brown, L. L. (2012). Neural correlates of long-term intense romantic love. Social Cognitive and Affective Neuroscience, 7, 145–149. doi: 10.1093/scan/nsq092.CrossRefPubMedGoogle Scholar
  2. Anderson, E. (2010). “At least with cheating there is an attempt at monogamy”: Cheating and monogamism among undergraduate heterosexual men. Journal of Social and Personal Relationships, 27, 851–872. doi: 10.1177/0265407510373908.CrossRefGoogle Scholar
  3. Aragona, B. J., Liu, Y., Curtis, J. T., Stephan, F. K., & Wang, Z. (2003). A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. Journal of Neuroscience, 23, 3483–3490.PubMedGoogle Scholar
  4. Aragona, B. J., Liu, Y., Yu, Y. J., Curtis, J. T., Detwiler, J. M., Insel, T. R., & Wang, Z. (2006). Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature Neuroscience, 9, 133–139. doi: 10.1038/nn1613.CrossRefPubMedGoogle Scholar
  5. Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94, 327–337. doi: 10.1152/jn.00838.2004.CrossRefPubMedGoogle Scholar
  6. Atkins, D. C., Baucom, D. H., & Jacobson, N. S. (2001). Understanding infidelity: Correlates in a national random sample. Journal of Family Psychology, 15, 735–749.CrossRefPubMedGoogle Scholar
  7. Barker, M., & Langdridge, D. (2010). Whatever happened to non-monogamies? Critical reflections on recent research and theory. Sexualities, 13, 748–772. doi: 10.1177/1363460710384645.CrossRefGoogle Scholar
  8. Bartels, A., & Zeki, S. (2000). The neural basis of romantic love. NeuroReport, 11, 3829–3834.CrossRefPubMedGoogle Scholar
  9. Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21, 1155–1166. doi: 10.1016/j.neuroimage.2003.11.003.CrossRefPubMedGoogle Scholar
  10. Buss, D. M., & Shackelford, T. K. (1997). Susceptibility to infidelity in the first year of marriage. Journal of Research in Personality, 31, 193–221. doi: 10.1006/jrpe.1997.2175.CrossRefGoogle Scholar
  11. Carter, C. S., Devries, A. C., & Getz, L. L. (1995). Physiological substrates of mammalian monogamy: The prairie vole model. Neuroscience and Biobehavioral Reviews, 19, 303–314. doi: 10.1016/0149-7634(94)00070-H.CrossRefPubMedGoogle Scholar
  12. Cho, M., DeVries, A., Williams, J., & Carter, C. (1999). The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behavioral Neuroscience, 113, 1071–1079.CrossRefPubMedGoogle Scholar
  13. Conley, T. D., Moors, A. C., Mastick, J. L., & Ziegler, A. (2013). The fewer the merrier?: Assessing stigma surrounding consensually non-monogamous romantic relationships. Analyses of Social Issues and Public Policies, 13, 1–30.CrossRefGoogle Scholar
  14. Derogatis, L. R., & Melisaratos, N. (1979). The DSFI: A multidimensional measure of sexual functioning. Journal of Sex and Marital Therapy, 5, 244–281. doi: 10.1080/00926237908403732.CrossRefPubMedGoogle Scholar
  15. Gruder-Adams, S., & Getz, L. L. (1985). Comparison of the mating system and paternal behavior in Microtus ochrogaster and M. pennsylvanicus. Journal of Mammalogy, 66, 165–167.CrossRefGoogle Scholar
  16. Hamann, S., Herman, R. A., Nolan, C. L., & Wallen, K. (2004). Men and women differ in amygdala response to visual sexual stimuli. Nature Neuroscience, 7, 411–416. doi: 10.1038/nn1208.CrossRefPubMedGoogle Scholar
  17. Hamilton, L. D., Pujols, Y., & Meston, C. M. (2012). Women’s behaviors and attitudes towards monogamy and non-monogamy. Paper presented at the Institute for the Section on Women and Psychology at the annual meeting of the Canadian Psychological Association, Halifax, NS.Google Scholar
  18. Haupert, M. L., Gesselman, A. N., Moors, A. C., Fisher, H. E., & Garcia, J. R. (2016). Prevalence of experiences with consensual nonmonogamous relationships: Findings from two national samples of single Americans. Journal of Sex and Marital Therapy. doi: 10.1080/0092623X.2016.1178675.PubMedGoogle Scholar
  19. Insel, T. R., & Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences, 89, 5981–5985.CrossRefGoogle Scholar
  20. Insel, T. R., Wang, Z. X., & Ferris, C. F. (1994). Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. Journal of Neuroscience, 14, 5381–5392.PubMedGoogle Scholar
  21. Kleiman, D. G. (1977). Monogamy in mammals. Quarterly Review of Biology, 52, 39–69.CrossRefPubMedGoogle Scholar
  22. Laumann, E. O., Gagnon, J. H., Michael, R. T., & Michaels, S. (1994). The social organization of sexuality: Sexual practices in the United States. Chicago, IL: University of Chicago Press.Google Scholar
  23. Lim, M. M., Wang, Z., Olazabal, D. E., Ren, X., Terwilliger, E. F., & Young, L. J. (2004). Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature, 429, 754–757. doi: 10.1038/nature02539.CrossRefPubMedGoogle Scholar
  24. Lim, M. M., & Young, L. J. (2004). Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience, 125, 35–45. doi: 10.1016/j.neuroscience.2003.12.008.CrossRefPubMedGoogle Scholar
  25. McGuire, B., & Novak, M. (1984). A comparison of maternal behaviour in the meadow vole (Microtus pennsylvanicus), prairie vole (M. ochrogaster) and pine vole (M. pinetorum). Animal Behaviour, 32, 1132–1141. doi: 10.1016/S0003-3472(84)80229-8.CrossRefGoogle Scholar
  26. Oliveras, D., & Novak, M. A. (1986). A comparison of paternal behavior in the meadow vole, Mictrotus pennsylvanicus, the pine vole, Microtus pinetorum, and the prairie vole, Microtus orgaster. Animal Behaviour, 141, 519–526.CrossRefGoogle Scholar
  27. Pitkow, L. J., Sharer, C. A., Ren, X., Insel, T. R., Terwilliger, E. F., & Young, L. J. (2001). Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. Journal of Neuroscience, 21, 7392–7396.PubMedGoogle Scholar
  28. Pujols, Y., Hamilton, L. D., Seal, B. N., & Meston, C. M. (2007). Monogamy and sexuality in US women: A pilot study. Poster presented at the annual meeting of the International Society for the Study of Women’s Sexual Health, Orlando, FL.Google Scholar
  29. Rupp, H. A., & Wallen, K. (2007). Sex differences in viewing sexual stimuli: An eye-tracking study in men and women. Hormones and Behavior, 51, 524–533. doi: 10.1016/j.yhbeh.2007.01.008.CrossRefPubMedGoogle Scholar
  30. Simpson, J. A., & Gangestad, S. W. (1991). Individual differences in sociosexuality: Evidence for convergent and discriminant validity. Journal of Personality and Social Psychology, 60, 870–883.CrossRefPubMedGoogle Scholar
  31. Stoléru, S., Fonteille, V., Cornélis, C., Joyal, C., & Moulier, V. (2012). Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: A review and meta-analysis. Neuroscience and Biobehavioral Reviews, 36, 1481–1509. doi: 10.1016/j.neubiorev.2012.03.006.CrossRefPubMedGoogle Scholar
  32. van Anders, S. M., Hamilton, L. D., & Watson, N. V. (2007). Multiple partners are associated with higher testosterone in North American men and women. Hormones and Behavior, 51, 454–459. doi: 10.1016/j.yhbeh.2007.01.002.CrossRefPubMedGoogle Scholar
  33. Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548. doi: 10.1038/365545a0.CrossRefPubMedGoogle Scholar
  34. Worsley, K. (2001). Statistical analysis of activation images. In P. Jezzard, P. Matthews, & S. Smith (Eds.), Functional MRI: An introduction to methods (pp. 251–270). Oxford: Oxford University Press.Google Scholar
  35. Xu, X., Aron, A., Brown, L., Cao, G., Feng, T., & Weng, X. (2011). Reward and motivation systems: A brain mapping study of early-stage intense romantic love in Chinese participants. Human Brain Mapping, 32, 249–257. doi: 10.1002/hbm.21017.CrossRefPubMedGoogle Scholar
  36. Young, K. A., Gobrogge, K. L., Liu, Y., & Wang, Z. (2011). The neurobiology of pair bonding: Insights from a socially monogamous rodent. Frontiers in Neuroendocrinology, 32, 53–69. doi: 10.1016/j.yfrne.2010.07.006.CrossRefPubMedGoogle Scholar
  37. Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., & Insel, T. R. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400, 766–768. doi: 10.1038/23475.CrossRefPubMedGoogle Scholar
  38. Young, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7, 1048–1054. doi: 10.1038/nn1327.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Texas at AustinAustinUSA
  2. 2.Department of PsychologyMount Allison UniversitySackvilleCanada

Personalised recommendations