Advertisement

Archives of Sexual Behavior

, Volume 46, Issue 8, pp 2213–2229 | Cite as

Situating Human Sexual Conditioning

  • Heather HoffmannEmail author
Invited Essay

Abstract

Conditioning is often thought of as a basic, automatic learning process that has limited applicability to higher-level human behavior. In addition, conditioning is seen as separable from, and even secondary to, “innate” processes. These ideas involve some misconceptions. The aim of this article is to provide a clearer, more refined sense of human sexual conditioning. After providing some background information and reviewing what is known from laboratory conditioning studies, human sexual conditioning is compared to sexual conditioning in nonhumans, to “innate” sexual responding, and to other types of human learning processes. Recommendations for moving forward in human sexual conditioning research are included.

Keywords

Human classical conditioning Sexual preferences Partner preference Learning Sexual orientation 

Notes

Acknowledgements

The author wishes to acknowledge Adam Safron and Erick Janssen for their assistance in idea development and Adam Safron and Ryan Hitchings of their helpful comments on the essay.

Compliance with Ethical Standards

Conflict of interest

The author declares that she has no conflict of interests.

References

  1. Aarts, H., & Custers, R. (2012). Unconscious goal pursuit: Nonconscious goal regulation and motivation. In R. M. Ryan (Ed.), The Oxford handbook of human motivation (pp. 234–247). New York, NY: Oxford University Press. doi: 10.1093/oxfordhb/9780195399820.013.0014.Google Scholar
  2. Akins, C. K. (2000). Effects of species-specific cues and the CS–US interval on the topography of the sexually conditioned response. Learning and Motivation, 31, 211–235. doi: 10.1006/lmot.2000.1050.CrossRefGoogle Scholar
  3. Akins, C. K. (2004). The role of Pavlovian conditioning in sexual behavior: A comparative analysis of human and nonhuman animals. International Journal of Comparative Psychology, 17, 241–262.Google Scholar
  4. Akins, C. K., Domjan, M., & Gutiérrez, G. (1994). Topography of sexually conditioned behavior in male Japanese quail (Coturnix japonica) depends on the CS–US interval. Journal of Experimental Psychology: Animal Behavior Processes, 20, 199–209.PubMedGoogle Scholar
  5. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481.PubMedCrossRefGoogle Scholar
  6. Atas, A., Faivre, N., Timmermans, B., Cleeremans, A., & Kouider, S. (2014). Nonconscious learning from crowded sequences. Psychological Science, 25, 113–119. doi: 10.1177/0956797613499591.PubMedCrossRefGoogle Scholar
  7. Baeyens, F., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118, 438–481. doi: 10.1037/a0023851.CrossRefGoogle Scholar
  8. Baeyens, F., Vansteenwegen, D., Hermans, D., & Eelen, P. (2001). Chilled white wine, when all of a sudden the doorbell rings: Mere reference and evaluation versus expectancy and preparation in human Pavlovian learning. In F. Columbus (Ed.), Advances in psychology research (Vol. 4, pp. 241–277). Hauppauge, NY: Nova Science Publishers.Google Scholar
  9. Bailey, J. M., Vasey, P. L., Diamond, L. M., Breedlove, S. M., Vilian, E., & Epprecht, M. (2016). Sexual orientation, controversy, and science. Psychological Science in the Public Interest, 17, 45–101. doi: 10.1177/1529100616637616.PubMedCrossRefGoogle Scholar
  10. Balleine, B. W. (2011). Sensation, incentive learning, and the motivational control of goal-directed action. In J. A. Gottfried (Ed.), Neurobiology of sensation and reward (pp. 287–310). Boca Raton, FL: CRC Press/Taylor & Francis.CrossRefGoogle Scholar
  11. Baluška, F., & Levin, M. (2016). On having no head: Cognition throughout biological systems. Frontiers in Psychology, 7, 902. doi: 10.3389/fpsyg.2016.00902.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Banca, P., Morris, L. S., Mitchell, S., Harrison, N. A., Potenza, M. N., & Voon, V. (2016). Novelty, conditioning and attentional bias to sexual rewards. Journal of Psychiatric Research, 72, 91–101. doi: 10.1016/j/jpsychires.2015.10.017.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bancroft, J. A. (1974). Deviant sexual behavior: Modification and assessment. Oxford: Clarendon.Google Scholar
  14. Beckstead, A. L. (2012). Can we change sexual orientation? Archives of Sexual Behavior, 41, 121–134. doi: 10.1007/s10508-012-9922-x.PubMedCrossRefGoogle Scholar
  15. Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507–513.PubMedCrossRefGoogle Scholar
  16. Both, S., Brauer, M., & Laan, E. (2011). Classical conditioning of sexual response in women: A replication study. Journal of Sexual Medicine, 8, 3116–3131. doi: 10.1111/j.1743-6109.2011.02453.x.PubMedCrossRefGoogle Scholar
  17. Both, S., Brauer, M., Weijenborg, P., & Laan, E. (2017). Effects of aversive classical conditioning on sexual response in women with dyspareunia and sexually functional controls. Journal of Sexual Medicine, 14, 687–701. doi: 10.1016/j.jsxm.2017.03.244.PubMedCrossRefGoogle Scholar
  18. Both, S., Laan, E., Spiering, M., Nilsson, T., Oomens, S., & Everaerd, W. (2008a). Appetitive and aversive classical conditioning of female sexual response. Journal of Sexual Medicine, 5, 1386–1401. doi: 10.1111/j.1743-6109.2008.00815.x.PubMedCrossRefGoogle Scholar
  19. Both, S., Spiering, M., Laan, E., Belcome, S., Van den Heuvel, B., & Everaerd, W. (2008b). Unconscious classical conditioning of sexual arousal: Evidence for the conditioning of female genital arousal to subliminally presented sexual stimuli. Journal of Sexual Medicine, 5, 100–109. doi: 10.1111/j.1743-6109.2007.00643.x.PubMedCrossRefGoogle Scholar
  20. Bouton, M. E., Mineka, S., & Barlow, D. H. (2001). A modern learning theory perspective on the etiology of panic disorder. Psychological Review, 108, 4–32.PubMedCrossRefGoogle Scholar
  21. Brewer, W. F. (1974). There is no convincing evidence for operant or classical conditioning in adult humans. In W. B. Weimer, D. S. Palermo, W. B. Weimer, & D. S. Palermo (Eds.), Cognition and the symbolic processes (pp. 1–42). Oxford: Lawrence Erlbaum.Google Scholar
  22. Brom, M. (2016). The role of incentive learning and cognitive regulation in sexual arousal (Doctoral dissertation). Retrieved from http://hdl.handle.net/1887/38523
  23. Brom, M., Laan, E., Everaerd, W., Spinhoven, P., & Both, S. (2014). Extinction and renewal of conditioned sexual responses. PLoS ONE, 9, e105955. doi: 10.1371/journal.pone.0105955.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brom, M., Laan, E., Everaerd, W., Spinhoven, P., & Both, S. (2015a). Extinction of aversive classically conditioned human sexual response. Journal of Sexual Medicine, 12, 916–935. doi: 10.1111/jsm.12800.PubMedCrossRefGoogle Scholar
  25. Brom, M., Laan, E., Everaerd, W., Spinhoven, P., Cousijn, J., & Both, S. (2015b). The influence of emotion down-regulation on the expectation of sexual reward. Behavior Therapy, 46, 379–394. doi: 10.1016/j.beth.2015.01.005.PubMedCrossRefGoogle Scholar
  26. Brom, M., Laan, E., Everaerd, W., Spinhoven, P., Trimbos, B., & Both, S. (2015c). d-Cycloserine reduces context specificity of sexual extinction learning. Neurobiology of Learning and Memory, 125, 202–210. doi: 10.1016/j.nlm.2015.09.010.PubMedCrossRefGoogle Scholar
  27. Brom, M., Laan, E., Everaerd, W., Spinhoven, P., Trimbos, B., & Both, S. (2016a). The influence of emotion upregulation on the expectation of sexual reward. Journal of Sexual Medicine, 13, 105–109. doi: 10.1016/j.jsxm.2015.11.003.PubMedCrossRefGoogle Scholar
  28. Brom, M., Laan, E., Everaerd, W., Spinhoven, P., Trimbos, B., & Both, S. (2016b). The effect of a dopamine antagonist on conditioning of sexual arousal in women. Psychopharmacology, 233, 1179–1189. doi: 10.1007/s00213-015-4201-x.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brown, P. L., & Jenkins, H. M. (1968). Auto-shaping the pigeon’s key peck. Journal of the Experimental Analysis of Behavior, 11, 1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Burns, M., & Domjan, M. (1996). Sign tracking versus goal tracking in the sexual conditioning of male Japanese quail (Coturnix japonica). Journal of Experimental Psychology: Animal Behavior Processes, 22, 297–306.PubMedGoogle Scholar
  31. Burns, M., & Domjan, M. (2000). Sign tracking in domesticated quail with one trial a day: Generality across CS and US parameters. Animal Learning & Behavior, 28, 109–119.CrossRefGoogle Scholar
  32. Burns, M., & Domjan, M. (2001). Topography of spatially directed conditioned responding: Effects of context and trial duration. Journal of Experimental Psychology: Animal Behavior Processes, 27, 269–278.PubMedGoogle Scholar
  33. Cetinkaya, H., & Domjan, M. (2006). Sexual fetishism in a quail (Coturnix japonica) model system: Test of reproductive success. Journal of Comparative Psychology, 120, 427–432. doi: 10.1037/0735-7036.120.4.427.PubMedCrossRefGoogle Scholar
  34. Cibrian-Llanderal, T., Rosas-Aguilar, V., Triana-Del Rio, R., Perez-Estudillo, C. A., Manzo, J., Garcia, L. I., & Coria-Avila, G. A. (2012). Enhanced D2-type receptor activity facilitates the development of conditioned same-sex partner preference in male rats. Pharmacology, Biochemistry and Behavior, 102, 177–183. doi: 10.1016/j.pbb.2012.04.007.PubMedCrossRefGoogle Scholar
  35. Cibrian-Llanderal, T., Triana-Del Rio, R., Tecamachaltzi-Silvaran, M., Pfaus, J. G., Manzo, J., Garcia, L. I., & Coria-Avila, G. A. (2014). Cohabitation between male rats after ejaculation: Effects on conditioned partner preference. Physiology & Behavior, 128, 303–308. doi: 10.1016/j.physbeh.2014.02.016.CrossRefGoogle Scholar
  36. Coria-Avila, G. A. (2012). The role of conditioning on heterosexual and homosexual partner preference in rats. Socioaffective Neuroscience and Psychology. doi: 10.3402/snp.v2i0.17340.PubMedPubMedCentralGoogle Scholar
  37. Coria-Avila, G. A., Jones, S. L., Solomon, C. E., Gavrila, A. M., Jordan, G. J., & Pfaus, J. G. (2006). Conditioned partner preference in female rats for strain of male. Physiology & Behavior, 88, 529–537. doi: 10.1016/j.physbeh.2006.05.001.CrossRefGoogle Scholar
  38. Costa, D. S. J., & Broakes, R. A. (2007). Maintenance of responding when reinforcement becomes delayed. Learning and Behavior, 35, 95–105.PubMedCrossRefGoogle Scholar
  39. Courville, A. C., Daw, N. D., & Touretzky, D. S. (2006). Bayesian theories of conditioning in a changing world. Trends in Cognitive Neuroscience, 10, 294–300.CrossRefGoogle Scholar
  40. Cox, W. M., Hogan, L. M., Kristian, M. R., & Race, J. H. (2002). Alcohol attentional bias as a predictor of alcohol abusers’ treatment outcome. Drug and Alcohol Dependence, 68, 237–243.PubMedCrossRefGoogle Scholar
  41. Craig, W. (1912). Observations on doves learning to drink. Journal of Animal Behavior, 2, 273–279.CrossRefGoogle Scholar
  42. Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin, 34, 91–107.CrossRefGoogle Scholar
  43. De Houwer, J., Thomas, S., & Baeyens, F. (2001). Associative learning of likes and dislikes: A review of 25 years of research on human evaluative conditioning. Psychological Bulletin, 127, 853–869.PubMedCrossRefGoogle Scholar
  44. Diamond, L. M. (2007). A dynamical systems approach to the development and expression of female same-sex sexuality. Perspectives in Psychological Science, 2, 142–161. doi: 10.1111/j.1745-6916.2007.00034.x.CrossRefGoogle Scholar
  45. Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17, 89–96. doi: 10.1038/nn.3594.PubMedCrossRefGoogle Scholar
  46. Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179–206. doi: 10.1146/annurev.psych.55.090902.141409.PubMedCrossRefGoogle Scholar
  47. Domjan, M., & Akins, C. K. (2011). Applications of Pavlovian conditioning to sexual behavior and reproduction. In T. R. Schachtman & S. Reilly (Eds.), Associative learning and conditioning theory: Human and non-human applications (pp. 507–531). New York: Oxford University Press.CrossRefGoogle Scholar
  48. Domjan, M., Mahometa, M. J., & Matthews, R. N. (2012). Learning in intimate connections: Conditioned fertility and its role in sexual competition. Socioaffective Neuroscience and Psychology, 2, 17333. doi: 10.3402/snp.v2i0.17333.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Enkvist, T., Newell, B., Juslin, P., & Olsson, H. (2006). On the role of causal intervention in multiple-cue judgment: Positive and negative effects on learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 163–179.PubMedCrossRefGoogle Scholar
  50. Faivre, N., Mudrik, L., Schwartz, N., & Koch, C. (2014). Multisensory integration in complete unawareness: Evidence from audiovisual congruency priming. Psychological Science, 25, 2006–2016. doi: 10.1177/0956797614547916.PubMedCrossRefGoogle Scholar
  51. Farooqui, A. A., & Manly, T. (2015). Anticipatory control through associative learning of subliminal relations: invisible may be better than visible. Psychological Science, 26, 325–334. doi: 10.1177/0956797614564191.PubMedCrossRefGoogle Scholar
  52. Fausto-Sterling, A. (2012). The dynamic development of gender variability. Journal of Homosexuality, 59, 398–421. doi: 10.1080/00918369.2012.653310.PubMedCrossRefGoogle Scholar
  53. Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual difference in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56, 139–148. doi: 10.1016/j.neuropharm.2008.06.027.PubMedCrossRefGoogle Scholar
  54. Flagel, S. B., Watson, S. J., Robinson, T. E., & Akil, H. (2007). Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology (Berl), 191, 599–607.CrossRefGoogle Scholar
  55. Gawronski, B., & Bodenhausen, G. V. (2006). Associative and propositional processes in evaluation: An integrative review of implicit and explicit attitude change. Psychological Bulletin, 132, 692–731.PubMedCrossRefGoogle Scholar
  56. Gawronski, B., & Bodenhausen, G. V. (2009). Operating principles versus operating conditions in the distinction between associative and propositional processes. Behavioral and Brain Sciences, 32, 207–208.CrossRefGoogle Scholar
  57. Gluck, M. A. (2008). Behavioral and neural correlates of error correction in classical conditioning and human category learning. In M. A. Gluck, J. R. Anderson, & S. M. Kosslyn (Eds.), Memory and mind: A festschrift for Gordon H. Bower (pp. 281–305). Oxford: Lawrence Erlbaum.Google Scholar
  58. Gluck, M. A., & Bowers, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.CrossRefGoogle Scholar
  59. Gluck, M. A., Myers, C., & Meeter, M. (2005). Cortico-hippocampal interaction and adaptive stimulus representation: A neurocomputational theory of associative learning and memory. Neural Networks, 18, 1265–1279.PubMedCrossRefGoogle Scholar
  60. Griffith, L. C., & Ejima, A. (2009). Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior. Learning & Memory, 19, 743–750. doi: 10.1101/lm.956309.CrossRefGoogle Scholar
  61. Hahn, A., Judd, C. M., Hirsh, H. K., & Blair, I. V. (2013). Awareness of implicit attitudes. Journal of Experimental Psychology: General, 143, 1369–1392. doi: 10.1037/a0035028.CrossRefGoogle Scholar
  62. Hall, W. G., Arnold, H. M., & Myers, K. P. (2000). The acquisition of an appetite. Psychological Science, 11, 101–105.PubMedCrossRefGoogle Scholar
  63. Havermans, R. C., Mulkens, S., NederKoorn, C., & Jansen, A. (2007). The efficacy of cue exposure with response prevention in extinguishing drug and alcohol cue reactivity. Behavioral Interventions, 22, 121–135.CrossRefGoogle Scholar
  64. Hermans, D., Crombez, G., Vansteenwegen, D., Baeyens, F., & Eelen, P. (2002). Expectancy-learning and evaluative learning in human classical conditioning: Differential effects of extinction. In S. P. Shohov (Ed.), Advances in psychology research (Vol. 12, pp. 17–40). Hauppauge, NY: Nova Science Publishers.Google Scholar
  65. Hoffmann, H. (2007, August). Classical conditioning of sexual arousal in men and women with an olfactory CS and vibrotactile US: Evidence for signal and affective learning. Poster presented at the meeting of the International Academy of Sex Research, Vancouver.Google Scholar
  66. Hoffmann, H. (2010, July). Sexual conditioning and awareness. In N. Prause (Chair), The influence of fast attention or awareness on sexual response. Symposium conducted at the meeting of the International Academy of Sex Research, Prague.Google Scholar
  67. Hoffmann, H. (2011). Hot and bothered: Classical conditioning of sexual incentives in humans. In T. R. Schachtman & S. Reilly (Eds.), Associative learning and conditioning theory: Human and non-human applications (pp. 532–550). New York: Oxford University Press.CrossRefGoogle Scholar
  68. Hoffmann, H., Goodrich, D., Wilson, M., & Janssen, E. (2014). The role of classical conditioning in sexual compulsivity: A pilot study. Sexual Addiction & Compulsivity, 21, 75–91. doi: 10.1037/t04027-000.CrossRefGoogle Scholar
  69. Hoffmann, H., & Janssen, E. (2006, July). Classical conditioning of sexual arousal to an olfactory cue in women and men: Who learns and what is learned? Paper presented at the meeting of the International Academy of Sex Research, Amsterdam.Google Scholar
  70. Hoffmann, H., Janssen, E., & Turner, S. (2004). Classical conditioning of sexual arousal in women and men: Effects of varying awareness and biological relevance of the CS. Archives of Sexual Behavior, 33, 43–53.PubMedCrossRefGoogle Scholar
  71. Hoffmann, H., Peterson, K., & Garner, H. (2012). Field conditioning of sexual arousal in humans. Socioaffective Neuroscience and Psychology. doi: 10.3402/snp.v2i0.17336.Google Scholar
  72. Hollis, K. L. (1997). Contemporary research on Pavlovian conditioning: A “new” functional analysis. American Psychologist, 52, 956–965.PubMedCrossRefGoogle Scholar
  73. Juslin, P., Olsson, H., & Olsson, A. C. (2003). Exemplar effects in categorization and multiple-cue judgment. Journal of Experimental Psychology: General, 132, 133–156.CrossRefGoogle Scholar
  74. Kantorowitz, D. A. (1978). Personality and conditioning of tumescence and detumescence. Behaviour Research and Therapy, 16, 117–123.PubMedCrossRefGoogle Scholar
  75. Kendrick, K. M., Haupt, M. A., Hinton, M. R., Broad, K. D., & Skinner, J. D. (2001). Sex differences in the influence of mothers on the sociosexual preferences of their offspring. Hormones and Behavior, 40, 322–338.PubMedCrossRefGoogle Scholar
  76. Kimura, H., Fukui, I., & Inaki, K. (1990). Autoshaping of a button-push response and eye movement in human subjects. Japanese Journal of Psychology, 61, 351–355.PubMedCrossRefGoogle Scholar
  77. Kirsch, I., Lynn, S., Vigorito, M., & Miller, R. R. (2004). The role of cognition in classical and operant conditioning. Journal of Clinical Psychology, 60, 369–392. doi: 10.1002/jclp.10251.PubMedCrossRefGoogle Scholar
  78. Klucken, T., Tabbert, K., Schweckendiek, J., Merz, C., Kagerer, S., Vaitl, D., & Stark, R. (2009). Contingency learning in human fear conditioning involves the ventral striatum. Human Brain Mapping, 30, 3636–3644. doi: 10.1002/hbm.20791.PubMedCrossRefGoogle Scholar
  79. Klucken, T., Wehrum, S., Schweckenddiek, J., Kruse, O., & Stark, R. (2016). Altered appetitive conditioning and neural connectivity in subjects with compulsive sexual behavior. Journal of Sexual Medicine, 13, 627–636. doi: 10.1016/j.jsxm.2016.01.013.PubMedCrossRefGoogle Scholar
  80. Klucken, T., Wehrum, S., Schweckenddiek, J., Merz, C. J., Hennig, J., Vaitl, D., & Stark, R. (2013). The 5-HTTLPR polymorphism is associated with altered hemodynamic responses during appetitive conditioning. Human Brain Mapping, 34, 2549–2560. doi: 10.1002/hbm.22085.PubMedCrossRefGoogle Scholar
  81. Köksal, F., Domjan, M., Kurt, A., Sertel, O., Orung, S., Bowers, R., & Kumru, G. (2004). An animal model of fetishism. Behaviour Research and Therapy, 42, 1421–1434.PubMedCrossRefGoogle Scholar
  82. Kruschke, J. K. (2008). Bayesian approaches to associative learning: From passive to active learning. Learning and Behavior, 36, 210–226.PubMedCrossRefGoogle Scholar
  83. Kruschke, J. K., & Johansen, M. K. (1999). A model of probabilistic category learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 25, 1083–1119.PubMedCrossRefGoogle Scholar
  84. Lalumière, M. L., & Quinsey, V. L. (1998). Pavlovian conditioning of sexual interests in human males. Archives of Sexual Behavior, 27, 241–252.PubMedCrossRefGoogle Scholar
  85. Letourneau, E. J., & O’Donohue, W. (1997). Classical conditioning of female sexual arousal. Archives of Sexual Behavior, 26, 63–78.PubMedCrossRefGoogle Scholar
  86. Lorenzetti, F. D., Mozzachiodi, R., Baxter, D. A., & Byrne, J. H. (2006). Classical and operant conditioning differentially modify the intrinsic properties of an identified neuron. Nature Neuroscience, 9, 17–19. doi: 10.1038/nn1593.PubMedCrossRefGoogle Scholar
  87. Lovibond, P. F., & Shanks, D. R. (2002). The role of awareness in Pavlovian conditioning: Empirical evidence and theoretical implications. Journal of Experimental Psychology: Animal Behavior Processes, 28, 3–26.PubMedGoogle Scholar
  88. Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298.CrossRefGoogle Scholar
  89. Marr, D. (1982). Vision: A computational approach. San Francisco: Freeman & Co.Google Scholar
  90. Mayo, L. M. (2015). Human drug conditioning: Combining self-report, behavioral, and psychophysiological measures (Unpublished doctoral dissertation). University of Chicago.Google Scholar
  91. Mayo, L. M., & de Wit, H. (2015). Acquisition of responses to a methamphetamine cue in healthy humans: Self-reported, behavioral, and psychophysiological measures. Neuropharmacology, 40, 1734–1741. doi: 10.1038/npp.2015.21.Google Scholar
  92. McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.PubMedCrossRefGoogle Scholar
  93. Miller, R. M. (2006). Challenges facing contemporary associative approaches to acquired behavior. Comparative Cognition & Behavior, 1, 77–93.Google Scholar
  94. Mineka, S., & Öhman, A. (2002). Phobias and preparedness: The selective, automatic, and encapsulated nature of fear. Biological Psychiatry, 51, 927–937.CrossRefGoogle Scholar
  95. Mineka, S., & Zinbarg, R. (2006). A contemporary learning theory perspective on the etiology of anxiety disorders: It’s not what you thought it was. American Psychologist, 61, 10–26.PubMedCrossRefGoogle Scholar
  96. Mitchell, C. J., De Houwer, J., & Lovibond, P. F. (2009). The propositional nature of human associative learning. Behavioral and Brain Sciences, 32, 183–198. doi: 10.1017/S0140525X09000855.PubMedCrossRefGoogle Scholar
  97. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, A. G., … Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529–533. doi: 10.1038/nature14236.
  98. Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–1947.PubMedGoogle Scholar
  99. Nash, S., & Domjan, M. (1991). Learning to discriminate the sex of conspecifics in male Japanese quail (Coturnix coturnix japonica): Tests of “biological constraints”. Journal of Experimental Psychology, 17, 342–353. doi: 10.1037/0097-7403.17.3.342.PubMedGoogle Scholar
  100. Nash, S., Domjan, M., & Askins, M. (1989). Sexual-discrimination learning in male Japanese quail (Coturnix coturnix japonica). Journal of Comparative Psychology, 103, 347–358.PubMedCrossRefGoogle Scholar
  101. Newlin, D. B. (1985). Human conditioned compensatory response to alcohol cues: Initial evidence. Alcohol, 2, 507–509.PubMedCrossRefGoogle Scholar
  102. Newlin, D. B. (1986). Conditioned compensatory response to alcohol placebo in humans. Psychopharmacology, 88, 247–251.PubMedCrossRefGoogle Scholar
  103. O’Donohue, W., & Plaud, J. J. (1994). The conditioning of human sexual arousal. Archives of Sexual Behavior, 23, 321–344.PubMedCrossRefGoogle Scholar
  104. O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2014). Complementary learning systems. Cognitive Science, 38, 1229–1248. doi: 10.1111/j.1551-6709.2011.01214.x.PubMedCrossRefGoogle Scholar
  105. O’Reilly, R. C., Jbabdi, S., & Behrens, T. E. (2012). How can a Bayesian approach inform neuroscience? European Journal Neuroscience, 35, 1169–1179. doi: 10.1111/j.1460-9568.2012.08010.x.CrossRefGoogle Scholar
  106. Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483–522.PubMedCrossRefGoogle Scholar
  107. Pavlov, I. P. (1927). Conditioned reflexes. London: Oxford University Press.Google Scholar
  108. Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552.PubMedCrossRefGoogle Scholar
  109. Pfaus, J. G., Ismail, N., & Coria-Avila, G. A. (2010). Sexual motivation. In G. F. Koob, M. Le Moal, & R. F. Thompson (Eds.), Encyclopedia of behavioral neuroscience (pp. 201–209). Oxford: Academic Press.CrossRefGoogle Scholar
  110. Pfaus, J. G., Kippin, T. E., & Centeno, S. (2001). Conditioning and sexual behavior: A review. Hormones and Behavior, 40, 291–321.PubMedCrossRefGoogle Scholar
  111. Pfaus, J. G., Kippin, T. E., Coria-Avila, G. A., Gelez, H., Afonso, V. M., Ismail, N., & Parada, M. (2012). Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. Archives of Sexual Behavior, 41, 31–62. doi: 10.1007/s10508-012-9935-5.PubMedCrossRefGoogle Scholar
  112. Phelps, E. A., O’Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441.PubMedCrossRefGoogle Scholar
  113. Pine, A., Mendelsohn, A., & Dudai, Y. (2014). Unconscious learning of likes and dislikes is persistent, resilient and reconsolidates. Frontiers in Psychology, 5, 1051. doi: 10.3389/fpsyg.2014.01501.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Plass, J., Guzman-Martinez, E., Ortega, L., Grabowecky, M., & Suzuki, S. (2014). Lip reading without awareness. Psychological Science, 25, 1835–1837. doi: 10.1177/0956797614542132.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Plaud, J. J., & Martini, J. R. (1999). The respondent conditioning of male sexual arousal. Behavior Modification, 23, 254–268.PubMedCrossRefGoogle Scholar
  116. Prause, N., Staley, C., & Roberts, V. (2014). Frontal alpha asymmetry and sexually motivated states. Psychophysiology, 51, 226–235. doi: 10.1111/psyp.12173.PubMedCrossRefGoogle Scholar
  117. Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43, 151–160.PubMedCrossRefGoogle Scholar
  118. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.Google Scholar
  119. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247–291.PubMedCrossRefGoogle Scholar
  120. Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95, S91–S117.PubMedGoogle Scholar
  121. Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 25–53.PubMedCrossRefGoogle Scholar
  122. Saunders, B. T., & Robinson, T. E. (2013). Individual variation in resisting temptation: Implications for addiction. Neuroscience and Biobehavioral Reviews, 37, 1955–1975. doi: 10.1016/j.neubiorev.2013.02.008.PubMedCrossRefGoogle Scholar
  123. Schactman, T. R., & Reilly, S. (2011). Associative learning and conditioning theory: Human and non-human applications. New York: Oxford University Press.CrossRefGoogle Scholar
  124. Schmajuk, N. A. (2010). Mechanisms in classical conditioning: A computational approach. New York: Cambridge University Press.CrossRefGoogle Scholar
  125. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMedCrossRefGoogle Scholar
  126. Shanks, D. R. (2010). Learning: From association to cognition. Annual Review of Psychology, 61, 273–301. doi: 10.1146/annurev.psych.093008.100519.PubMedCrossRefGoogle Scholar
  127. Siegel, S., Hinson, R. E., Krank, M. D., & McCully, J. (1982). Heroin “overdose” death: The contribution of drug-associated environmental cues. Science, 216, 436–437. doi: 10.1126/science.7200260.PubMedCrossRefGoogle Scholar
  128. Silva, F. J., Timberlake, W., & Gont, R. S. (1998). Spatiotemporal characteristics of serial CSs and their relation to search modes and response form. Animal Learning & Behavior, 26, 299–312.CrossRefGoogle Scholar
  129. Snowdon, C. T., Tannenbaum, P. L., Schultz-Darken, N. J., Ziegler, T. E., & Ferris, C. F. (2011). Conditioned sexual arousal in a nonhuman primate. Hormones and Behavior, 59, 696–701. doi: 10.1016/j.yhbeh.2010.10.009.PubMedCrossRefGoogle Scholar
  130. Sweatt, J. D. (2016). Neural plasticity and behavior: Sixty years of conceptual advances. Journal of Neurochemistry, 14, 1471–4159. doi: 10.1111/jnc.13580.Google Scholar
  131. Timberlake, W. (1994). Behavioral systems, associationism, and Pavlovian conditioning. Psychonomic Bulletin & Review, 1, 405–420.CrossRefGoogle Scholar
  132. Triana-Del Rio, R., Montero-Dominguez, F., Cibrian-Llanderal, T., Tecamachaltzi-Silvaran, M.B., Garcia, L. I., Manzo, J. … Coria-Avila, G. A. (2011). Same-sex cohabitation under the effects of quinpirole induces a conditioned socio-sexual partner preference in males, but not in female rats. Pharmacology, Biochemistry & Behavior, 99, 604–613.Google Scholar
  133. Triana-Del Rio, R., Tecamachaltzi-Silvaran, M. B., Diaz-Estrada, V. X., Herrera-Covaurrubias, D., Corona-Morales, A. A., Pfaus, J. G., & Coria-Avila, G. A. (2015). Conditioned same-sex partner preference in male rats is facilitated by oxytocin and dopamine: Effects on sexually dimorphic brain nuclei. Behavioural Brain Research, 15(283), 69–77. doi: 10.1016/j.bbr.2015.01.019.CrossRefGoogle Scholar
  134. Versaggi, C. L., King, C. P., & Meyer, P. J. (2016). The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Psychopharmacology (Berl), 233, 2985–2997. doi: 10.1007/s00213-016-4341-7.CrossRefGoogle Scholar
  135. Wagner, A. R., & Brandon, S. E. (1989). Evolution of a structured connectionist model of Pavlovian conditioning (AESOP). In S. B. Klein & R. R. Mowrer (Eds.), Contemporary leaning theories: Pavlovian conditioning and the status of traditional learning theory (pp. 149–189). Hillsdale, NJ: Erlbaum.Google Scholar
  136. Wagner, A. R., & Brandon, S. E. (2001). A componential theory of Pavlovian conditioning. In R. R. Mowrer & S. B. Klein (Eds.), Contemporary learning: Theory and application (pp. 23–64). Mahwah, NJ: Erlbaum.Google Scholar
  137. Wiers, R. M., Cox, W. M., Fadazri, J. S., Palfai, T. P., & Stacy, A. W. (2006). The search for new ways to change implicit alcohol-related cognitions in heavy drinkers. Alcoholism, Clinical and Experimental Research, 30, 320–331.PubMedCrossRefGoogle Scholar
  138. Wilken, M., Cremer, V., Berry, J., & Bartmann, P. (2013). Rapid home-based weaning of small children with feeding tube dependency: Positive effects on feeding behavior without deceleration of growth. Archives of Disease in Childhood, 98, 856–861. doi: 10.1136/archdischild-2012-303558.PubMedCrossRefGoogle Scholar
  139. Williams, D. R., & Williams, H. (1969). Automaintenance in the pigeon: Sustained pecking despite contingent non-reinforcement. Journal of the Experimental Analysis of Behavior, 12, 511–520.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yamins, D. L. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19, 356–365. doi: 10.1038/nn.4244.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PsychologyKnox CollegeGalesburgUSA

Personalised recommendations