Skip to main content
Log in

Effectiveness of single and combined use of selected dietary probiotic and prebiotics on growth and intestinal conditions of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1978) juvenile

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Single or combined effect of yeast, galactooligosaccharide (GOS), mannanoligosaccharide (MOS), and β-glucan was evaluated on the growth performance, nutrient digestibility, digestive enzyme activities, intestinal morphology, and microbiota of striped catfish (Pangasianodon hypophthalmus) juveniles. Triplicate groups of striped catfish (15.85 ± 0.29 g) were fed twice per day at 3% of body weight for 12 weeks, with 0 (control), 1% yeast, 1% GOS, 0.4% MOS, 0.1% β-glucan, 1% yeast + 1% GOS (YGOS), 1% yeast + 0.4% MOS (YMOS), and 1% yeast + 0.1% β-glucan (YβG). With the exception of 1% yeast, the growth performance, nutrient digestibility, protease activity, and villi length were significantly improved (P < 0.05) in all the supplemented diets over the control fed group. Results also revealed that 1% GOS and YβG significantly improved the final weight and specific growth rate (SGR) over all the remaining treatments. A significant increase in amylase activity was only observed in fish fed with 1% GOS-, YMOS-, and YβG-supplemented diets compared to the control. A total of eleven bacterial phyla were identified from the intestine of striped catfish and Firmicutes was the most dominant phylum found in all the fish fed with supplemented diets. The results suggest that administration of 1% GOS and YβG afforded the best growth performance, nutrient digestibility, digestive enzyme activities, intestinal morphology, and microbiota of striped catfish juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

Abbreviations

GOS:

Galactooligosaccharide

MOS:

Mannanoligosaccharide

FOS:

Fructooligosaccharides

XOS:

Xylooligosaccharides

SGR:

Specific growth rate

YGOS:

Yeast + galactooligosaccharide

YMOS:

Yeast + mannanoligosaccharide

YβG:

Yeast + β-glucan

WG:

Weight gain

PER:

Protein efficiency ratio

FCR:

Feed conversion ratio

HSI:

Hepatosomatic index

IPF:

Intraperitoneal fat

VSI:

Viscerosomatic index

AOAC:

Association of Official Analytical Chemists

APD:

Apparent protein digestibility

ADM:

Apparent dry matter digestibility

ANOVA:

One-way analysis of variance

BSA:

Bovine serum albumin

NBF:

Neutral buffered formalin

SPSS:

Statistical Package for the Social Sciences

SCFA:

Short-chain fatty acids

CMC:

Carboxymethyl cellulose

NFE:

Nitrogen-free extract

GE:

Gross energy

V:

Villus

VL:

Villus length

VW:

Villus width

CJ:

Crypt junction

References

  • Akter MN (2015) Effect of Lactobacillus acidophilus and mannan oligosaccharide on growth performance, intestinal morphology, digestive enzyme activities, haematology and resistance of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) juveniles against Aeromonas hydrophila. PhD Thesis. Universiti Sains Malaysia, Malaysia, pp 1–311

  • Akter MN, Sutriana A, Talpur AD, Hashim R (2016) Dietary supplementation with mannan oligosaccharide influences growth, digestive enzymes, gut morphology, and microbiota in juvenile striped catfish Pangasianodon Hypophthalmus. Aquacult Int 24(1):127–144

    Article  CAS  Google Scholar 

  • Andoh A, Bamba T, Sasaki M (1999) Physiological and anti-inflammatory roles of dietary fiber and butyrate in intestinal functions. J Parenter Enteral Nutr 23:S70–S73. https://doi.org/10.1177/014860719902300518

    Article  CAS  Google Scholar 

  • Anguiano M, Pholenz C, Buentello A, Gatlin DM III (2013) The effects of prebiotics on the digestive enzymes and gut histomorphology of red drum (Sciaenops ocellatus) and hybrid striped bass (Morone chrysops x M. saxatilis). Br J Nutr 109:625–629. https://doi.org/10.1017/S0007114512001754

    Article  CAS  Google Scholar 

  • AOAC (1997) Association of Official Analytical Chemists. Official methods of analysis of AOAC International, 16th ed, Vol 1, Arlington

  • Arora T, Sharma RK (2011) Prebiotic effectiveness of galactooligosaccharides and beta-glucan in stimulation of growth of Lactobacillus acidophilus NCDC 13 in vitro. Curr Top Nutraceut R 9(1–2):67–70

    Google Scholar 

  • Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH (2016) The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immun 54:516–522

    Article  Google Scholar 

  • Bagheri T, Hedayati SA, Yavari V, Alizade M, Farzanfar A (2008) Growth, survival and gut microbial load of rainbow trout (Oreochromis mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turkish J Fish Aquat Sci 8:43–48

    Google Scholar 

  • Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386. https://doi.org/10.1016/j.ydbio.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  • Bennett KW, Eley A (1993) Fusobacteria: new taxonomy and related diseases. J Med Microbiol 39(4):246–254. https://doi.org/10.1099/00222615-39-4-246

    Article  CAS  PubMed  Google Scholar 

  • Bier M (1955) Lipases: RCOOR′ + H2O → RCOOH + R′OH. Meth Enzymol 1:627–642

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Burr G, Hume M, Ricke S, Nisbet D, Gatlin DM III (2010) In vitro and in vivo evaluation of the prebiotics Grobiotic-A, inulin, mannanoligosaccharide, and galactooligosaccharide on the digestive microbiota and performance of hybrid striped bass (Morone chrysops x Morone saxatilis). Microb Ecol 59:187–198

    Article  CAS  PubMed  Google Scholar 

  • Burr G, Hume M, Ricke S, Nisbet D, Gatlin DM III (2008) A preliminary in vitro assessment of GroBiotic-A, brewer’s yeast and fructooligosaccharide as prebiotics for the red drum Sciaenops ocellatus. J Environ Sci Health B 43:253–260. https://doi.org/10.1080/03601230701771438

    Article  CAS  PubMed  Google Scholar 

  • Cerezuela R, Meseguer J, Esteban MA (2011) Current knowledge in synbiotic use for fish aquaculture: a review. J Aquac Res Dev S 1:008. https://doi.org/10.4172/2155-9546.S1-008

    Article  Google Scholar 

  • Clements KD, Gleeson VP, Slaytor M (1994) Short chain fatty-acid metabolism in temperate marine herbivorous fish. J Comp Physiol 164:372–377

    Article  CAS  Google Scholar 

  • Collinder E, Bjornhag G, Cardona M, Norin E, Rehbinder C, Midtvedt T (2003) Gastrointestinal host-microbial interactions in mammals and fish: comparative studies in man, mice, rats, pigs, horses, cows, elk, reindeer, salmon and cod. Microb Ecol Health Dis 15(2–3):66–78. https://doi.org/10.1080/08910600310014980

    Article  CAS  Google Scholar 

  • Cota-Gastelum LA, Luna-Gonzalez A, Gonzalez-Ocampo HA, Flores-Miranda MC, Fierro-Coronado JA, Escamilla-Montes R, Peraza-Gomez V (2013) Effect of Pediococcus sp., Pediococcus pentosaceus, inulin and fulvic acid, added to the diet, on growth of Oreochromis niloticus. Afr J Microbiol Res 7(48):5489–5495. https://doi.org/10.5897/AJMR2013.6369

    Article  CAS  Google Scholar 

  • Cristea V, Mocanu M, Antache A, Docan A, Dediu L, Ion P, Coada MT (2012) Effect of stocking density on leuckocyte reaction of Oncorhynchus mykiss (Walbaum, 1792). J Anim Sci Biotechnol 45(2):31–36

    Google Scholar 

  • Cruz PM, Ibanez AL, Hermosillo OAM, Saad HCR (2012) Use of probiotics in aquaculture (Review article). ISRN Microbiol. https://doi.org/10.5402/2012/916845

    Article  Google Scholar 

  • Dalmo RA, Bogwald J (2008) Beta-glucans as conductors of immune symphonies. Fish Shellfish Immunol 25:384–396

    Article  CAS  PubMed  Google Scholar 

  • Davenport HA (1960) Histological and histochemical techniques. W. B. Saunders and Co., Philadelphia and Lond

    Google Scholar 

  • de Azevedo RV, Fosse-Filho JC, Cardoso LD, da Cruz MD, Vidal MV Jr, de Andrade DR (2015) Economic evaluation of prebiotics, probiotics and synbiotics in juvenile Nile tilapia. Rev Cienc Agron 46:72–79. https://doi.org/10.1590/S1806-66902015000100009

    Article  Google Scholar 

  • Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1(1):1–29

    Google Scholar 

  • Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss. J Anim Sci 87(10):3226–3234. https://doi.org/10.2527/jas.2008-1428

    Article  CAS  PubMed  Google Scholar 

  • Duncan DB (1955) Multiple ranges and multiple (F) test. Biomet 11:1–42

    Article  Google Scholar 

  • Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D (2005) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol 61(3):493–531. https://doi.org/10.1111/j.1095-8649.2002.tb00893.x

    Article  Google Scholar 

  • Faramarzi M, Kiaalvandi S, Iranshahi F (2011) The effect of probiotics on growth performance and body composition of common carp (Cyprinus carpio). J Anim Vet Adv 10(18):2408–2413

    CAS  Google Scholar 

  • Fioramonti J, Theodorou V, Bueno L (2003) Probiotics: what are they? What are their effects on gut physiology? Best Pract Res Clin Gastroenterol 17(5):711–724. https://doi.org/10.1016/S1521-6918(03)00075-1

    Article  CAS  PubMed  Google Scholar 

  • Flickinger EA, Loo JV, Fahey GC (2003) Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit Rev Food Sci Nutr 43:19–60. https://doi.org/10.1080/10408690390826446

    Article  CAS  PubMed  Google Scholar 

  • Furukawa A, Tsukahara H (1966) On the acid digestion method for the determination of chromium oxide as an index substance in the study of digestibility of fish feed. Bull Jpn Soc Sci Fish 32:502–506

    Article  CAS  Google Scholar 

  • Geraylou Z, Souffreau C, Rurangwa E, Maes GE, Spanier KI, Courtin CM, Delcour JA, Buyse J, Ollevier F (2013) Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol Ecol 86(2):357–371. https://doi.org/10.1111/1574-6941.12169

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Sinha A, Sahu C (2008) Dietary probiotic supplementation in growth and health of live-bearing ornamental fishes. Aquacul Nutr 14(4):289–299. https://doi.org/10.1111/j.1365-2095.2007.00529.x

    Article  CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412. https://doi.org/10.1093/jn/125.6.1401

    Article  CAS  PubMed  Google Scholar 

  • Gomez GD, Balcazar JL (2008) A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol 52(2):145–154. https://doi.org/10.1111/j.1574-695X.2007.00343.x

    Article  CAS  PubMed  Google Scholar 

  • .Grisdale-Helland B, Helland SJ, Gatlin III DM, (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquacult 283(1–4):163–167. https://doi.org/10.1016/j.aquaculture.2008.07.012

    Article  CAS  Google Scholar 

  • Hassaan MS, Soltan MA, Ghonemy MMR (2014) Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, haematological and biochemical indices of the Nile tilapia (Oreochromis niloticus). Egypt J Aquat Res 40(2):199–208. https://doi.org/10.1016/j.ejar.2014.04.001

    Article  Google Scholar 

  • Heikkinen J, Vielma J, Kemiläinen O, Tiirola M, Eskelinen P, Kiuru T, Navia-Paldanius D, von Wright A (2006) Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquacult 261(1):259–268. https://doi.org/10.1016/j.aquaculture.2006.07.012

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Ringø E, Masouleh AS, Esteban MA (2014) Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev Aquacult 8(1):1–14. https://doi.org/10.1111/raq.12082

    Article  Google Scholar 

  • Hoseinifar SH, Eshaghzadeh H, Vahabzadeh H, Mana NP (2016a) Modulation of growth performances, survival, digestive enzyme activities and intestinal microbiota in common carp (Cyprinus carpio) larvae using short chain fructooligosaccharide. Aquacult Res 47(10):3246–3253. https://doi.org/10.1111/are.12777

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Zoheiri F, Maryam Dadar M, Rufchaei R, Ringø E (2016b) Dietary galactooligosaccharide elicits positive effects on non-specific immune parameters and growth performance in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol 56:467–472. https://doi.org/10.1016/j.fsi.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  • Jarmolowichz S, Zakes Z, Siwicki A, Kowalska A, Hopko M, Glabski E, Demska-Zakes K, Partyka K (2012) Effect of brewer’s yeast extract on growth performance and health of juvenile pike perch Sander lucioperca (L.). Aquacul Nutr 18(4):457–464. https://doi.org/10.1111/j.1365-2095.2011.00915.x

    Article  CAS  Google Scholar 

  • Kanther M, Rawls JF (2010) Host-microbe interactions in the developing zebrafish. Curr Opin Immunol 22(1):10–19. https://doi.org/10.1016/j.coi.2010.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansen M, Merrifield DL, Gonzalez JL, Myklebust R., Ringø E (2011) Evaluation of prebiotic and probiotic effects on the intestinal gut microbiota and histology of Atlantic salmon (Salmo Salar L.) Aquacult Res Dev. https://doi.org/10.1016/j.coi.2010.01.006

  • Lara-Flores M, Olvera-Novoa MA, Guzmán-Méndez BE, López-Madrid W (2003) Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquacult 216(1–4):193–201. https://doi.org/10.1016/S0044-8486(02)00277-6

    Article  Google Scholar 

  • Li P, Gatlin DM III (2005) Evaluation of the prebiotic GroBiotic-A and brewers yeast as dietary supplements for sub-adult hybrid striped bass (Morone chrysops x M. saxatilis) challenged in situ with Mycobacterium marinum. Aquacult 248(1–4):197–205. https://doi.org/10.1016/j.aquaculture.2005.03.005

    Article  CAS  Google Scholar 

  • Li P, Wang X, Murthy S, Gatlin DM III, Castille FL, Lawrence AL (2009) Effect of dietary supplementation of brewer’s yeast and Grobiotic-A on growth, immune responses, and low-salinity tolerance of pacific white shrimp Litopenaeus vannamei cultured in recirculating systems. J Appl Aquacult 21(2):110–119. https://doi.org/10.1080/10454430902892917

    Article  CAS  Google Scholar 

  • Lin S, Mao S, Guan Y, Luo L, Pan Y (2012) Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio). Aquacult 342–343:36–41. https://doi.org/10.1016/j.aquaculture.2012.02.009

    Article  CAS  Google Scholar 

  • Lupatsch I, Santos GA, Schrama JW, Verreth JAJ (2010) Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax. Aquacult 298(3–4):245–250. https://doi.org/10.1016/j.aquaculture.2009.11.007

    Article  Google Scholar 

  • Mahghani F, Gharaei A, Ghaffari M, Akrami R (2014) Dietary synbiotic improves the growth performance, survival and innate immune response of gibel carp (Carassius auratus gibelio) juveniles. Int J Aquat Biol 2(2):99–104. https://doi.org/10.22034/ijab.v2i2.37

    Article  Google Scholar 

  • Merrifield DL, Harper GM, Dimitroglou A, Ringø E, Davies SJ (2010a) Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquacult Res 41(8):1268–1272

    Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010b) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquacult 302(1–2):1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007

    Article  Google Scholar 

  • Namba A, Mano N, Hirose H (2007) Phylogenetic analysis of intestinal bacteria and their adhesive capability in relation to the intestinal mucus of carp. J Appl Microbiol 102(5):1307–1317. https://doi.org/10.1111/j.1365-2672.2006.03204.x

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  • Nekoubin H, Hatefi S, Javahery S, Sudagar M (2012) Effects of synbiotic (Biomin Imbo) on growth performance, survival rate, reproductive parameters of angelfish (Pterophyllum scalare). Walailak J Sci Tech 9(4):327–332

    Google Scholar 

  • Olvera-Novoa MA, Martinez-Palacios CA, Olivera-Castillo L (2002) Utilization of torula yeast (Candida utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry. Aquacult Nutr 8(4):257–264. https://doi.org/10.1046/j.1365-2095.2002.00215.x

    Article  CAS  Google Scholar 

  • Paulsen SM, Lunde H, Engsta RE, Robertsen B (2003) In vivo effects of β-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo Salar L.). Fish Shellfish Immunol 14(1):39–54. https://doi.org/10.1006/fsim.2002.0416

    Article  CAS  PubMed  Google Scholar 

  • Phumee P (2011) Optimal protein-lipid level and replacement of fish meal with plant protein sources in feeds formulated for (Pangasianodon hypophthalmus, Sauvage, 1878). PhD Thesis. Universiti Sains Malaysia, Malaysia. 1–166

  • Qiang X, Lie CY, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77(3):435–441. https://doi.org/10.1016/j.carbpol.2009.03.016

    Article  CAS  Google Scholar 

  • Quintero-Villegas MI (2014) Non-digestible oligosaccharides: anti-adherence and other biological properties. PhD Thesis. p 194

  • Rawls JF, Mahowald MA, Goodman AL, Trent CM, Gordon JI (2007) In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc Natl Acad Sci U S A 104:7622–7627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refstie S, Baeverfjord G, Seim RR, Elvebo O (2010) Effects of dietary yeast cell wall β-glucans and MOS on performance, gut health, and salmon lice resistance in Atlantic salmon (Salmo salar) fed sunflower and soybean meal. Aquacult 305:109–116. https://doi.org/10.1016/j.aquaculture.2010.04.005

    Article  CAS  Google Scholar 

  • Ringø E, Olsen RE, Gifstad TØ, Dalmo RA, Amlund H, Hemre GI, Bakke AM (2010) Prebiotics in aquaculture: a review. Aquacult Nutr 16(2):117–136. https://doi.org/10.1111/j.1365-2095.2009.00731.x

    Article  CAS  Google Scholar 

  • Ringø E, Olsen RE, Gonzales-Vecino JL, Wadsworth S, Song SK (2012) Use of immunostimulants and nucleotides in aquaculture: a review. J Mar Sci: Res Dev. https://doi.org/10.4172/2155-9910.1000104

  • Sako T, Matsumoto K, Tanaka R (1999) Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int Dairy J 9(1):69–80. https://doi.org/10.1016/S0958-6946(99)00046-1

    Article  CAS  Google Scholar 

  • Sealey WM, Barrows FT, Hang A, Johansen KA, Overturf K, LaPatra S (2007) Evaluation of the ability of partially autolyzed yeast and Grobiotic-A to improve disease resistance of rainbow trout. N Am J Aquac 69(4):400–406. https://doi.org/10.1577/A06-080.1

    Article  Google Scholar 

  • Sealey WM, Barrows FT, Smith CE, Overturf K, LaPatra SE (2009) Soybean level and probiotics in first feeding fry diets alter the ability of rainbow trout (Oncorhynchus mykiss) to utilize high levels of soybean meal during grow-out. Aquacult 293(3–4):195–203. https://doi.org/10.1016/j.aquaculture.2009.04.013

    Article  Google Scholar 

  • Sealey WM, Conley ZB, Besley M (2015) Prebiotic supplementation has only minimal effects on growth efficiency, intestinal health and disease resistance of westslope cutthroat trout Oncorhynchus clarkii lewisi Fed 30% Soybean Meal. Front Immunol. https://doi.org/10.3389/fimmu.2015.00396

    Article  PubMed  PubMed Central  Google Scholar 

  • Sink TD, Lochmann RT (2008) Preliminary observations of mortality reduction in stressed, Flavobacterium columnare-challenged golden shiners after treatment with dairy-yeast prebiotic. N Am J Aquacult 70(2):192–194. https://doi.org/10.1577/A07-067.1

    Article  Google Scholar 

  • Soleimani N, Hoseinifar SH, Merrifield DL, Barati M, Abadi ZH (2012) Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 32(2):316–321. https://doi.org/10.1016/j.fsi.2011.11.023

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Sahai I (1987) Effects of loading density and carbohydrate metabolism and haematology in the Indian freshwater catfish Heteropneustes fossilis. Aquacult 66:275–236. https://doi.org/10.1016/0044-8486(87)90113-X

    Article  CAS  Google Scholar 

  • Sutriana A (2017) The use of selected prebiotics and probiotic in feed development for striped catfsh (Pangasianodon hypophthalmus, Sauvage, 1878) juveniles: effects on growth parameters and health status. Ph.D. Thesis, Universiti Sains Malaysia, Malaysia. pp 1–264

  • Sutriana A, Hashim R, Akter MN, Nor SAM (2018) Galactooligosaccharide and a combination of yeast and β-glucan supplements enhance growth and improve intestinal condition in striped catfish Pangasianodon hypophthalmus fed soybean meal diets. Fish Sci 84(3):523–533

    Article  CAS  Google Scholar 

  • Suzer C, Çoban D, Kamaci HO, Saka Ş, Firat K, Otgucuoğlu Ö, Küçüksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquacult 280:140–145. https://doi.org/10.1016/j.aquaculture.2008.04.020

    Article  CAS  Google Scholar 

  • Tamamdusturi R, Yuhana M (2016) Administration of microencapsulated probiotic Bacillus sp. NP5 and prebiotic mannan oligosaccharide for prevention of Aeromonas hydrophila infection on Pangasianodon hypophthalmus. J Fish Aquat Sci 11(1):67–76

    Article  CAS  Google Scholar 

  • Titus E, Ahearn GA (1988) Short-chain fatty-acid transport in the intestine of herbivorous teleost. J Exp Biol 135:77–94

    Article  CAS  PubMed  Google Scholar 

  • van Kessel MAHJ, Dutilh BE, Neveling K, Kwint MP, Veltman JA, Flik G, Jetten SM, Klaren PHM, den Camp HJO (2011) Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express 1(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671. https://doi.org/10.1128/MMBR.64.4.655-671.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Engelhardt W, Bartels J, Kirschberger S, Duttingdorf HDMZ, Busche R (1998) Role of short-chain fatty acids in the hind gut. Vet Quart 20(3):52–59. https://doi.org/10.1080/01652176.1998.9694970

    Article  Google Scholar 

  • Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 5. Verlag Checmie, Weinheim, pp 270–277

  • Wang Y (2011) Use of probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilusas as growth promoters in grass carp (Ctenopharyngodon idella) fingerlings. Aquacult Nutr 17(2):372–378. https://doi.org/10.1111/j.1365-209(5),pp.00771,2010.x

    Article  CAS  Google Scholar 

  • Wang YB (2007) Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture 269(1–4):259–264. https://doi.org/10.1016/j.aquaculture.2007.05.035

    Article  CAS  Google Scholar 

  • Wang YB, Xu Z (2006) Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol 127(3–4):283–292. https://doi.org/10.1016/j.anifeedsci.2005.09.003

    Article  CAS  Google Scholar 

  • Widanarni & Tanbiyaskur (2015) Application of probiotic, prebiotic and synbiotic for the control of Streptococcosis in tilapia (Oreochromis niloticus). Pak Biol Sci 18(2):59–66. https://doi.org/10.3923/pjbs.2015.59.66

    Article  Google Scholar 

  • Worthington CC (1988) Worthington enzyme manual: alpha amylase. Enzymes, and related biochemicals. Worthington Biochemical Corporation Freehold, New Jersey, pp 38–42

    Google Scholar 

  • Yar-Ahmadi Farahmand H, Miandare HK, Mirvaghevi HP, Hoseinifar SH (2016) The effects of dietary immunogen on innate immune response, immune related genes expression and disease resistance of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 37(2):209–214. https://doi.org/10.1016/j.fsi.2014.02.006

    Article  CAS  Google Scholar 

  • Yar-Ahmadi P, Moradi N, Ghyvandi N (2014) The effect of dietary supplemented with synbiotic (Biomin IMBO®) on growth performance, carcass composition, hematological and serum biochemical parameters of common carp (Cyprinus carpio Linnaeus, 1758, Cyprinidae). J Chem Biol Phy Sci 4(3):2129–2139

    CAS  Google Scholar 

  • Yin Z, Lam TJ, Sin YM (1995) The effects of crowding stress on the non-specific immune response in fancy carp (Cyprinus carpio L.). Fish Shellfish Immunol 5(7):519–529. https://doi.org/10.1016/S1050-4648(95)80052-2

    Article  Google Scholar 

  • Yousefian M, Amiri MS (2009) A review of the use of prebiotic in aquaculture for fish and shrimp. Afr J Biotechnol 8(25):7313–7318

    CAS  Google Scholar 

  • Zhang CN, Li XF, Xu WN, Zhang DD, Lu KL, Wang LN, Tian HY, Liu WB (2015) Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on growth performance, body composition, intestinal enzymes activities and gut histology of triangular bream (Megalobrama terminalis). Aquacult Nutr 21:755–766. https://doi.org/10.1111/anu.12200

    Article  CAS  Google Scholar 

  • Zhou QC, Buentello JA, Gatlin DM III (2010) Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquacult 309(1–4):253–257. https://doi.org/10.1111/anu.12200

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the USM Postgraduate Research Grant Scheme (PRGS).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Amalia Sutriana: experimental design, conducted the experiment, data collection, and analysis, drafted the manuscript.

Dr. Mst. Nahid Akter: helped in conducting the experiment, data collection, and analysis, manuscript editing.

Dr. Roshada Hashim: oversight and leadership responsibility of the research project including research activity planning and execution, mentorship, and manuscript editing.

Dr. Siti Azizah Mohd Nor: PhD co-supervisor, helped in experimental design, data analysis, and manuscript editing.

Corresponding author

Correspondence to Amalia Sutriana.

Ethics declarations

Ethical approval

The procedures in handling, maintenance, and killing of animals applied in this study complied with the guidelines of the Animal Ethics Committee of Universiti Sains Malaysia.

Consent to participate for publication

All authors sent their consent to be an author for this publication.

Conflict of interest

Author 1 Amalia Sutriana has received a grant from the Postgraduate Research Grant Scheme (PRGS) in USM. Authors 2, 3, and 4 have contributed to the research and have no financial interest.

Additional information

Handling Editor: Gavin Burnell

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutriana, A., Akter, M.N., Hashim, R. et al. Effectiveness of single and combined use of selected dietary probiotic and prebiotics on growth and intestinal conditions of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1978) juvenile. Aquacult Int 29, 2769–2791 (2021). https://doi.org/10.1007/s10499-021-00777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00777-4

Keywords

Navigation