Early immune gene development and expression in African catfish Clarias gariepinus after challenged with Aeromonas hydrophila

Abstract

Understanding the development of immunity in the early life of fish may help improve the effective management of diseases in aquaculture. However, little is known about the timing of the appearance of different immune-related genes in African catfish C. gariepinus, an important aquaculture species in Africa and Southeast Asia countries. The current study examined the transcriptional onset of immune-related mRNA expression during the development of C. gariepinus and analyzed their expression after pathogenic Aeromonas hydrophila infection. The results showed that the important innate and adaptive immune components mRNA transcripts were detected since the unfertilized eggs of C. gariepinus. The initial development of immune-competence in African catfish was predicted during 30–60 dah. Immune and stress genes were widely expressed in all tissues but mainly in the lymphoid organs and the liver. After the A. hydrophila challenge, the immune genes were modulated rapidly in the liver, spleen, and head kidney. The obtained findings are giving important information in understanding the immune maturation, and for the development of disease management in the African catfish culture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alejo A, Tafalla C (2011) Chemokines in teleost fish species. Dev Comp Immunol 35:1215–1222. https://doi.org/10.1016/j.dci.2011.03.011

    CAS  Article  PubMed  Google Scholar 

  2. Alimuddin A, Putri FM, Wahjuningrum D et al (2018) Resistance against Aeromonas hydrophila infection and growth of second generation (F2) African catfish (Clarias gariepinus) using selected molecular markers. Biotropia (Bogor) 2:95–102. https://doi.org/10.11598/btb.2018.25.2.742

    Article  Google Scholar 

  3. Arya P, Pradhan PK, Paria A, Sharma R, Verma DK, Ravindra, Rathore G, Sood N (2019) Ontogeny and tissue-specific expression of immune-relevant genes in Catla catla (Hamilton). Gene Expr Patterns 34:119071. https://doi.org/10.1016/j.gep.2019.119071

    CAS  Article  PubMed  Google Scholar 

  4. Azis A, Alimuddin A, Sukenda S, Junior MZ (2015) MHC I molecular marker inheritance and first generation catfish (Clarias sp.) resistance against Aeromonas hydrophila infection. Pakistan J Biotechnol 12:131–137

  5. Buonocore F, Randelli E, Trisolino P, Facchiano A, de Pascale D, Scapigliati G (2014) Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Mol Immunol 62:10–18. https://doi.org/10.1016/j.molimm.2014.05.009

    CAS  Article  PubMed  Google Scholar 

  6. Caipang CMA, Fagutao FF (2015) Molecular ontogeny of selected immune-relevant and metabolism-related genes in cod, Gadus morhua during early development. Aquac Res 46:1946–1957. https://doi.org/10.1111/are.12350

    CAS  Article  Google Scholar 

  7. Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160. https://doi.org/10.1007/s12038-010-0015-5

    CAS  Article  PubMed  Google Scholar 

  8. Chen M, Wang R, Li L, Liang W, Wang Q, Huang T, Li C, Li J, Gan X, Lei A, Huang W, Luo H (2014) Immunological enhancement action of endotoxin-free tilapia heat shock protein 70 against Streptococcus iniae. Cell Immunol 290:1–9. https://doi.org/10.1016/j.cellimm.2013.12.008

    CAS  Article  PubMed  Google Scholar 

  9. Cordero H, Guzmán-Villanueva LT, Chaves-Pozo E, Arizcun M, Ascencio-Valle F, Cuesta A, Esteban MA (2016) Comparative ontogenetic development of two marine teleosts, gilthead seabream and European sea bass: new insights into nutrition and immunity. Dev Comp Immunol 65:1–7. https://doi.org/10.1016/j.dci.2016.06.011

    Article  PubMed  Google Scholar 

  10. Covello JM, Bird S, Morrison RN, Bridle AR, Battaglene SC, Secombes CJ, Nowak BF (2013) Isolation of RAG-1 and IgM transcripts from the striped trumpeter (Latris lineata), and their expression as markers for development of the adaptive immune response. Fish Shellfish Immunol 34:778–788. https://doi.org/10.1016/j.fsi.2012.12.015

    CAS  Article  PubMed  Google Scholar 

  11. Das A, Mohapatra A, Sahoo PK (2015) Cloning and characterization of antimicrobial peptide, hepcidin in medium carp, Puntius sarana. Int J Pept Res Ther 21:139–147. https://doi.org/10.1007/s10989-014-9438-4

    CAS  Article  Google Scholar 

  12. Dash P, Patel S, Dixit A, Garg LC, Sahoo PK (2015) Four pro-inflammatory cytokines of rohu (Labeo rohita) during early developmental stages, their tissue distribution and expression by leucocytes upon in-vitro stimulation. Fish Shellfish Immunol 47:913–922. https://doi.org/10.1016/j.fsi.2015.10.034

    CAS  Article  PubMed  Google Scholar 

  13. Dauda AB, Natrah I, Karim M, Kamarudin MS, Bichi AH (2018) African catfish aquaculture in Malaysia and Nigeria: status, trends, and prospects. Fish Aquac J 09:1–5. https://doi.org/10.4172/2150-3508.1000237

    Article  Google Scholar 

  14. de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454. https://doi.org/10.1093/bioinformatics/bth078

    CAS  Article  PubMed  Google Scholar 

  15. Eissa N, Wang HP, Yao H, Shen ZG, Shaheen AA, Abou-ElGheit EN (2017) Expression of Hsp70, Igf1, and three oxidative stress biomarkers in response to handling and salt treatment at different water temperatures in yellow perch, Perca flavescens. Front Physiol 8:1–15. https://doi.org/10.3389/fphys.2017.00683

    Article  Google Scholar 

  16. Ekasari J, Suprayudi MA, Wiyoto W, Hazanah RF, Lenggara GS, Sulistiani R, Alkahfi M, Zairin M Jr (2016) Biofloc technology application in African catfish fingerling production: the effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture 464:349–356. https://doi.org/10.1016/j.aquaculture.2016.07.013

    Article  Google Scholar 

  17. Ferraresso S, Bonaldo A, Parma L, Buonocore F, Scapigliati G, Gatta PP, Bargelloni L (2016) Ontogenetic onset of immune-relevant genes in the common sole (Solea solea). Fish Shellfish Immunol 57:278–292. https://doi.org/10.1016/j.fsi.2016.08.044

    CAS  Article  PubMed  Google Scholar 

  18. Fischer U, Djikstra JM, Kollner B et al (2005) The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 18:49–60. https://doi.org/10.1016/j.fsi.2004.05.006

    CAS  Article  PubMed  Google Scholar 

  19. Hanif A, Bakopoulos V, Dimitriadis GJ (2004) Maternal transfer of humoral specific and non-specific immune parameters to sea bream (Sparus aurata) larvae. Fish Shellfish Immunol 17:411–435. https://doi.org/10.1016/j.fsi.2004.04.013

    CAS  Article  PubMed  Google Scholar 

  20. Heinecke RD, Chettri JK, Buchmann K (2014) Adaptive and innate immune molecules in developing rainbow trout, Oncorhynchus mykiss eggs and larvae: expression of genes and occurrence of effector molecules. Fish Shellfish Immunol 38:25–33. https://doi.org/10.1016/j.fsi.2014.02.010

    CAS  Article  PubMed  Google Scholar 

  21. Lee JW, Lee JH, Noh JK, Kim HC, Park CJ, Park JW, Kim KK (2014) Transcriptional onset of lysozyme genes during early development in olive flounder (Paralichthys olivaceus). Dev Reprod 18:267–274. https://doi.org/10.12717/DR.2014.18.4.267

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Ma D, Zhao C, Xiao Z, Xu S, Xiao Y, Wang Y, Liu Q, Li J (2017) The expression pattern of hsp70 plays a critical role in thermal tolerance of marine demersal fish: multilevel responses of Paralichthys olivaceus and its hybrids (P. olivaceus ♀ × P. dentatus ♂) to chronic and acute heat stress. Mar Environ Res 129:386–395. https://doi.org/10.1016/j.marenvres.2017.06.015

    CAS  Article  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151. https://doi.org/10.1016/j.fsi.2004.09.006

    CAS  Article  PubMed  Google Scholar 

  25. Mao MG, Lei JL, Alex PM, Hong WS, Wang KJ (2012) Characterization of RAG1 and IgM (mu chain) marking development of the immune system in red-spotted grouper (Epinephelus akaara). Fish Shellfish Immunol 33:725–735. https://doi.org/10.1016/j.fsi.2012.06.011

    CAS  Article  PubMed  Google Scholar 

  26. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799. https://doi.org/10.1128/aem.64.2.795-799.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Nasrullah H, Nababan YI, Yanti DH, Hardiantho D, Nuryati S, Junior MZ, Ekasari J, Alimuddin A (2019) Identification and expression analysis of c-type and g-type lysozymes genes after Aeromonas hydrophila infection in African catfish. J Akuakultur Indones 18:1–10. https://doi.org/10.19027/jai.18.2.1-10

    Article  Google Scholar 

  28. Nayak SP, Mohanty BR, Mishra J, Rauta PR, Das A, Eknath AE, Sahoo PK (2011) Ontogeny and tissue-specific expression of innate immune related genes in rohu, Labeo rohita (Hamilton). Fish Shellfish Immunol 30:1197–1201. https://doi.org/10.1016/j.fsi.2011.02.014

    CAS  Article  PubMed  Google Scholar 

  29. Olaniyi WA, Omitogun OG (2013) Stages in the early and larval development of the African catfish Clarias gariepinus (Teleostei , Clariidae). Zygote 22:1–17. https://doi.org/10.1017/S0967199413000063, Stages in the early and larval development of the African catfishClarias gariepinus(Teleostei, Clariidae)

  30. Patel S, Sørhus E, Fiksdal IU, Espedal PG, Bergh Ø, Rødseth OM, Morton HC, Nerland AH (2009) Ontogeny of lymphoid organs and development of IgM-bearing cells in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol 26:385–395. https://doi.org/10.1016/j.fsi.2008.11.018

    CAS  Article  PubMed  Google Scholar 

  31. Pederzoli A, Mola L (2016) The early stress responses in fish larvae. Acta Histochem 118:443–449. https://doi.org/10.1016/j.acthis.2016.03.001

    CAS  Article  PubMed  Google Scholar 

  32. Reichert M, Borzym E, Matras M, Maj-Paluch J, Stachnik M, Palusinska M (2016) Down-regulation of MHC class I mRNA expression in the course of KHV infection. J Fish Dis 39:1253–1256. https://doi.org/10.1111/jfd.12451

    CAS  Article  PubMed  Google Scholar 

  33. Rodrigues PNS, Vazquez-Dorado S, Neves J, Wilson M (2006) Dual function of fish hepcidin : response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev Comp Immunol 30:1156–1167. https://doi.org/10.1016/j.dci.2006.02.005

    CAS  Article  PubMed  Google Scholar 

  34. Rohmana D, Surawidjaja EH, Sukenda S, Ekasari J (2014) Water quality and production performance of catfish–prawn co-culture with organic carbon source addition. Aquac Int 23:267–276. https://doi.org/10.1007/s10499-014-9814-2

    CAS  Article  Google Scholar 

  35. Sahoo PK, Mukherjee SC, Sahoo SK (1998) Aeromonas hydrophila versus Edwardsiella tarda: a pathoanatomical study in Clarias batrachus. J Aqua 6:57–66

    Google Scholar 

  36. Sahoo PK, Rauta PR, Mohanty BR, Mahapatra KD, Saha JN, Rye M, Eknath AE (2011) Selection for improved resistance to Aeromonas hydrophila in Indian major carp Labeo rohita: survival and innate immune responses in first generation of resistant and susceptible lines. Fish Shellfish Immunol 31:432–438. https://doi.org/10.1016/j.fsi.2011.06.014

    CAS  Article  PubMed  Google Scholar 

  37. Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239. https://doi.org/10.1111/j.1365-2109.2007.01883.x

    CAS  Article  Google Scholar 

  38. Secombes CJ, Wang T, Bird S (2011) The interleukins of fish. Dev Comp Immunol 35:1336–1345. https://doi.org/10.1016/j.dci.2011.05.001

    CAS  Article  PubMed  Google Scholar 

  39. Song L, Li C, Xie Y, Liu S, Zhang J, Yao J, Jiang C, Li Y, Liu Z (2016) Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection. Fish Shellfish Immunol 49:154–162. https://doi.org/10.1016/j.fsi.2015.12.009

    CAS  Article  PubMed  Google Scholar 

  40. Sukenda S, Rahman R, Nisaa K, Hidayatullah D, Vinasyiam A (2018) The efficacy of Streptococcus agalactiae vaccine preparations, administered to tilapia broodstock, in preventing streptococcosis in their offspring, via transfer of maternal immunity. Aquac Int 26:785–798. https://doi.org/10.1007/s10499-018-0252-4

    CAS  Article  Google Scholar 

  41. Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375. https://doi.org/10.1016/j.dci.2011.07.002

    CAS  Article  PubMed  Google Scholar 

  42. Uribe C, Folch H, Enriquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med (Praha) 56:486–503. https://doi.org/10.17221/3294-VETMED

    CAS  Article  Google Scholar 

  43. Vadstein O, Bergh Ø, Gatesoupe F-J, Galindo-Villegas J, Mulero V, Picchietti S, Scapigliati G, Makridis P, Olsen Y, Dierckens K, Defoirdt T, Boon N, de Schryver P, Bossier P (2013) Microbiology and immunology of fish larvae. Rev Aquac 5:S1–S25. https://doi.org/10.1111/j.1753-5131.2012.01082.x

    Article  Google Scholar 

  44. Wachirachaikarn A, Rungsin W, Srisapoome P, Na-Nakorn U (2009) Crossing of African catfish, Clarias gariepinus (Burchell, 1822), strains based on strain selection using genetic diversity data. Aquaculture 290:53–60. https://doi.org/10.1016/j.aquaculture.2009.01.036

    Article  Google Scholar 

  45. Yin X, Mu L, Fu S, Wu L, Han K, Wu H, Bian X, Wei X, Guo Z, Wang A, Ye J (2019) Expression and characterization of Nile tilapia ( Oreochromis niloticus ) secretory and membrane-bound IgM in response to bacterial infection. Aquaculture 508:214–222. https://doi.org/10.1016/j.aquaculture.2019.03.058

    CAS  Article  Google Scholar 

  46. Zapata A, Diez B, Cejavelo T et al (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol 20:126–136. https://doi.org/10.1016/j.fsi.2004.09.005

    CAS  Article  PubMed  Google Scholar 

  47. Zhang S, Wang Z, Wang H (2013) Maternal immunity in fish. Dev Comp Immunol 39:72–78. https://doi.org/10.1016/j.dci.2012.02.009

    CAS  Article  PubMed  Google Scholar 

  48. Zhang S, Xu Q, Boscari E, du H, Qi Z, Li Y, Huang J, di J, Yue H, Li C, Congiu L, Wei Q (2018) Characterization and expression analysis of g- and c-type lysozymes in Dabry’s sturgeon (Acipenser dabryanus). Fish Shellfish Immunol 76:260–265. https://doi.org/10.1016/j.fsi.2018.03.006

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Research and Higher Education, Republic of Indonesia [grant number: 3977 /IT3.L1/PN/2020] for AA and SS. The authors’ thanks to Mr. Dedi Supriadi, Mr. Fuadi, and Dr. Dodi Hermawan for their excellent technical help in this study.

Funding

This work was funded by the Ministry of Research and Higher Education, Republic of Indonesia [grant number: 3977 /IT3.L1/PN/2020] for AA and SS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alimuddin Alimuddin.

Ethics declarations

Conflict of interest

Authors declared that they have no association with or participation in any organization with any financial interest or non-financial interest in the subject matter or materials referred to in this manuscript.

Ethical approval

All animal experimental and rearing procedures were handled complied with the animal welfare under the national accreditation no. SNI 7306:2009 of the Republic of Indonesia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasrullah, H., Yanti, D.H., Faridah, N. et al. Early immune gene development and expression in African catfish Clarias gariepinus after challenged with Aeromonas hydrophila. Aquacult Int (2021). https://doi.org/10.1007/s10499-021-00645-1

Download citation

Keywords

  • African catfish
  • Bacterial infection
  • Gene expression
  • Immune development
  • Ontogeny