Skip to main content
Log in

Nutritional effect of Artemia nauplii enriched with Tetraselmis suecica and Chaetoceros calcitrans microalgae on growth and survival on the river prawn Macrobrachium americanum larvae

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The nutritional value of nauplii and metanauplii I of Artemia enriched with microalgae as food for freshwater prawn larvae (Macrobrachium americanum) was tested. The larvae were fed with three different diets consisting of Artemia nauplii (D1), Artemia metanauplii I enriched with Tetraselmis suecica (D2), and Artemia metanauplii I enriched with Chaetoceros calcitrans (D3) from zoea (Z)II. Growth showed differences since the third week, and the highest and lowest growth was observed with D3 and D1, respectively. The first metamorphosis to post-larvae appeared with treatment D3 at 9 weeks. Survival showed differences at the first week with D1 and D3 treatments, and D2 showed the best survival up to week 4. From the sixth week to the end, treatment D3 reached the highest survival. With treatments D1 and D2, all larvae died at the 9th and 10th week, respectively. D3 was the most effective of the three diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Z:

Zoea

PUFAs:

Polyunsaturated fatty acids

AA:

Arachidonic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentanoic acid

HUFAs:

Highly unsaturated fatty acids

MUFAs:

Monounsaturated fatty acids

LNA:

Linolenic acid

LOA:

Linoleic acid

D1 :

Artemia nauplii

D2 :

Artemia metanauplii I enriched with Tetraselmis suecica

D3 :

Artemia metanauplii I enriched with Chaetoceros calcitrans

References

  • Agard JB (1999) A four-dimensional response surface analysis of the ontogeny of physiological adaptation to salinity and temperature in larvae of the palaemonid shrimp Macrobrachium rosenbergii (de Man). J Exp Mar Biol Ecol 236:209–233

    Article  Google Scholar 

  • Ali SSR, Ambasankar K, Praveena PE, Nandakumar S, Syamadayal J (2017) Effect of dietary fructooligosaccharide supplementation on growth, body composition, hematological and immunological parameters of Asian seabass (Lates calcarifer). Aquac Int 25:837–848

    Article  CAS  Google Scholar 

  • Anger K, Hayd L (2009) From lecithotrophy to planktotrophy: ontogeny of larval feeding in the Amazon River prawn Macrobrachium amazonicum. Aquat Biol 7:19–30

    Article  Google Scholar 

  • Anh NTN, Hien TTT, Mathieu W, Hoa NV, Sorgeloos P (2009) Effect of fishmeal replacement with Artemia biomass as a protein source in practical diets for the giant freshwater prawn Macrobrachium rosenbergii. Aquac Res 40:669–680

    Article  CAS  Google Scholar 

  • Arana-Magallón MF (1974) Experiencias sobre el cultivo del langostino Macrobrachium americanum Bate, en el noroeste de México. In: Dupree HK, Price KS Jr, Shaw WN, Danberg KS (eds) Actas del Simposio sobre Acuicultura en América Latina, Vol 1. Documentos de investigación. FAO, Rome, pp 139–147

    Google Scholar 

  • Araujo MC, Valenti WC (2007) Feeding habit of the Amazon river prawn Macrobrachium amazonicum larvae. Aquaculture 265:187–193

    Article  Google Scholar 

  • Bauer RT (2013) Amphidromy in shrimps: a life cycle between rivers and the sea. Lat Am J Aquat Res 41:633–650

    Article  Google Scholar 

  • Bell MV, Batty RS, Dick JR, Fretwell K, Navarro JC, Sargent JR (1995) Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.) Lipids 30:443–449

    Article  PubMed  CAS  Google Scholar 

  • Benítez-Mandujano MA, Ponce-Palafox JT (2014) Effects of different dietary of protein and lipid levels on the growth of freshwater prawns (Macrobrachium carcinus) broodstock. Rev MVZ Córdoba 19:3921–3929

    Article  Google Scholar 

  • Bhavan PS, Devi VG, Shanti R, Radhakrishnan S, Poongodi R (2010) Basic biochemical constituents and profiles of amino acids in the post larvae of Macrobrachium rosenbergii fed with Spirulina and yeast enriched Artemia. J Sci Res 2:539–540

    Article  CAS  Google Scholar 

  • Boudour-Boucheker N, Boulo V, Charmantier-Daures M, Anger K, Charmantier G, Lorin-Nebel C (2016) Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: expression patterns of ion transporter genes. Comp Biochem Physiol A Mol Integr Physiol 195:39–45

    Article  PubMed  CAS  Google Scholar 

  • Brett M, Müller-Navarra D (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  • Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    Article  PubMed  CAS  Google Scholar 

  • Castro J, Castro T, Sánchez J, Castro G, Castro A, Zaragoza J, Monroy MDC (2006) Cysts and nauplii biometry characteristics of seven Artemia franciscana (Kellog, 1906) populations from Mexico. Rev Biol Mar Oceanogr 41:187–193

    Article  Google Scholar 

  • Cavalli RO, Lavens P, Sorgeloos P (1999) Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition. Aquaculture 179:387–402

    Article  CAS  Google Scholar 

  • Chakraborty RD, Chakraborty K, Radhakrishnan EV (2007) Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker's yeast for use in larviculture. J Agric Food Chem 55:4043–4051

    Article  PubMed  CAS  Google Scholar 

  • Cho SH, Hur SB, Jo JY (2001) Effect of enriched live feeds on survival and growth rates in larval Korean rockfish, Sebastes schlegeli Hilgendorf. Aquac Res 32:199–208

    Article  Google Scholar 

  • Choudhury PC (1970) Complete larval development of the palaemonid shrimp Macrobrachium acanthurus (Wiegmann, 1836), reared in the laboratory. Crustaceana 18:113–132

    Article  Google Scholar 

  • Choudhury PC (1971) Complete larval development of the palaemonid shrimp Macrobrachium carcinus (L.), reared in the laboratory (Decapoda, Palaemonidae). Crustaceana 20:51–69

    Article  Google Scholar 

  • Daniels WH, D’Abramo LR, Parseval LD (1992) Design and management of a close recirculated clearwater hatchery system for freshwater Macrobrachium praws. J Shellfish Res 11:65–73

    Google Scholar 

  • Das SK, Tiwari VK, Venkateshwarlu G, Reddy AK, Parhi J, Sharma P, Chettri JK (2007) Growth, survival and fatty acid composition of Macrobrachium rosenbergii (de Man, 1879) post larvae fed HUFA-enriched Moina micrura. Aquaculture 269:464–475

    Article  CAS  Google Scholar 

  • De Barros HP, Valenti WC (2003) Food intake of Macrobrachium rosenbergii during larval development. Aquaculture 216:165–176

    Article  Google Scholar 

  • De Grave S, Cai Y, Anker A (2008) Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595:287–293

    Article  Google Scholar 

  • Devresse B, Romdhane MS, Buzzi M, Rasowo J, Léger P, Brown J, Sorgeloos P (1990) Improved larviculture outputs in the giant freshwater prawn Macrobrachium rosenbergii fed a diet of Artemia enriched with n-3 HUFA and phospholipids. J World Aquacult Soc 21:123–125

    Google Scholar 

  • Dhont J, Van Stappen G (2003) Biology, tank production and nutritional value of Artemia. In: Josianne G, Støttrupm Lesley a (eds) Live feeds in marine aquaculture. McEvoy by Blackwell Science Ltd a Blackwell, pp 65–121

  • Folch J, Less M, Stanley GHS (1956) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  • Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  Google Scholar 

  • Gamboa-Delgado J, Le Vay L (2009) Artemia replacement in co-feeding regimes for mysis and postlarval stages of Litopenaeus vannamei: nutritional contribution of inert diets to tissue growth as indicated by natural carbon stable isotopes. Aquaculture 297:128–135

    Article  CAS  Google Scholar 

  • García-Guerrero M, de los Santos-Romero R, Vega-Villasante F, Cortes-Jacinto E (2015) Conservation and aquaculture of native freshwater prawns: the case of the cauque river prawn Macrobrachium americanum (Bate, 1868). Lat Am J Aquat Res 43:819-827 https://doi.org/10.3856/vol43-issue5-fulltext-2

  • García-Guerrero M, Hendrickx ME (2009) External description of the embryonic development of the prawn, Macrobrachium americanum Bate, 1868 (Decapoda, Palaemonidae) based on the staging method. Crustaceana 82:1413–1422

    Article  Google Scholar 

  • García-Guerrero M, Orduña-Rojas J, Cortés-Jacinto E (2011) Size and temperature effects on oxygen consumption of the river prawn Macrobrachium americanum Bate over its regular temperature range. N Am J Aquac 73:320–326

    Article  Google Scholar 

  • Guillard RR, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide C. J Phycol 8:10–14

    CAS  Google Scholar 

  • Karuppasamy PK, Sri Sakthi Priyadarshini R, Ramamoorthy N, Sujatha R, Ganga S, Jayalakshmi T, Santhanam P (2014) Comparison of proximate, amino and fatty acid composition of Penaeus monodon (Fabricius, 1798), Fenneropenaeus indicus (H. Milne Edwards, 1837) and Aristeus virilis (Bate, 1881) of Nagapattinam landing Centre, Tamil Nadu. J Mar Biol Assoc India 55:5–10

    Google Scholar 

  • Kotrbacek V, Doubek J, Doucha J (2015) The chlorococcalean alga Chlorella in animal nutrition: a review. J Appl Phycol 27:2173–2180

    Article  CAS  Google Scholar 

  • Lavens P, Sorgeloos P (2000) The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture 181:397–403

    Article  Google Scholar 

  • Lavens P, Thongrod S, Sorgeloos P (2000) Larval prawn feeds and the dietary importance of Artemia. In: New MB, Valenti WC (eds) Freshwater prawn culture: the farming of Macrobrachium rosenbergii. Wiley-Blackwell, Oxford, pp 91–111

    Chapter  Google Scholar 

  • Léger P, Bengston DA, Simpson KL, Sorgeloos P (1986) The use and nutritional value of Artemia as a food source. Oceanogr Mar Biol Annu Rev 24:521–623

    Google Scholar 

  • Lober M, Zeng C (2009) Effect of microalgae concentration on larval survival, development and growth of an Australian strain of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 289:95–100

    Article  Google Scholar 

  • Lora-Vilchis MC, Ruiz-Velasco-Cruz E, Reynoso-Granados T, Voltolina D (2004) Evaluation of five microalgae diets for juvenile pen shells Atrina maura. J World Aquacult Soc 35:232–236

    Article  Google Scholar 

  • Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295–309

    Article  Google Scholar 

  • Maciel CR, New MB, Valenti WC (2012) The predation of Artemia nauplii by the larvae of the Amazon River prawn, Macrobrachium amazonicum (Heller, 1862), is affected by prey density, time of day, and ontogenetic development. J World Aquacult Soc 43:659–669

    Article  Google Scholar 

  • Mantellato F, Barbosa L (2005) Population structure and relative growth of freshwater prawn Macrobrachium brasiliense (Decapoda, Palaemonidae) from São Paulo State, Brazil. Acta Limnol Bras 17:245–255

    Google Scholar 

  • Méndez-Martínez Y, Yamasaki-Granados S, García-Guerrero MU, Martínez-Córdova LR, Rivas-Vega ME, Arcos-Ortega FG, Cortés-Jacinto E (2017) Effect of dietary protein content on growth rate, survival and body composition of juvenile cauque river prawn, Macrobrachium americanum (Bate 1868). Aquac Res 48:741–751

    Article  CAS  Google Scholar 

  • Méndez-Martínez Y, García-Guerrero MU, Arcos-Ortega FG, Martínez-Córdova LR, Yamasaki-Granados S, Pérez-Rodríguez JC, Cortés-Jacinto E (2018) Effect of different ratios of dietary protein-energy on growth, body proximal composition, digestive enzyme activity, and hepatopancreas histology in Macrobrachium americanum (Bate, 1868) prawn juveniles. Aquaculture 485:1–11

    Article  CAS  Google Scholar 

  • Moller TH (1978) Feeding behaviour of larvae and postlarvae of Macrobrachium rosenbergii (De Man) (Crustacea: Palaemonidae). J Exp Mar Biol Ecol 35:251–258

    Article  Google Scholar 

  • Monaco G (1975) Laboratory rearing of larvae of the palaemonid shrimp Macrobrachium americanum (Bate). Aquaculture 6:169–375

  • Morales MC, Meruane J (2012) Larval condition indicators applied to the northern river shrimp Cryphiops caementarius (Molina, 1782), under condition of controlled cultivation. Lat Am J Aquat Res 40:730-742

    Article  Google Scholar 

  • Muller-Feuga A, Moal J, Kaas R (2003) The microalgae of aquaculture. In: Josianne G, Støttrupm Lesley A (eds) Live feeds in marine aquaculture. McEvoy by Blackwell Science Ltd a Blackwell, pp 206–252

  • Naegel LC (1999) Controlled production of Artemia biomass using an inert commercial diet, compared with the microalgae Chaetoceros. Aquac Eng 21:49–59

    Article  Google Scholar 

  • Nandlal S (2010) A new species for culture in the Pacific: evaluation of the potential of the indigenous Macrobrachium lar (Fabricius, 1798). In: Unpublished Doctor of Philosophy Thesis. University of the South Pacific, SuvaNavarro JC,

  • Nelson MM, Crear BJ, Nichols PD, Ritz DA (2004) Growth and lipid composition of phyllosomata of the southern rock lobster, Jasus edwardsii, fed enriched Artemia. Aquac Nutr 10:237–246

    Article  CAS  Google Scholar 

  • New MB (2005) Freshwater prawn farming: global status, recent research and a glance at the future. Aquac Res 36:210–230

    Article  Google Scholar 

  • Nguyen DT, Vangansbeke D, De Clercq P (2014) Solid artificial diets for the phytoseiid predator Amblyseius swirskii. Biol Control 59:719–727

    Google Scholar 

  • O'Connor JD, Gilbert LI (1968) Aspects of lipid metabolism in crustaceans. Am Zool 8:529–539

    Article  PubMed  CAS  Google Scholar 

  • Racotta IS, Palacios E, Hernández-Herrera R, Bonilla A, Pérez-Rostro CI, Ramirez JL (2004) Criteria for assesing larval and postlarval quality in white pacific shrimp (Litopenaeus vannamei, Boone 1931). Aquaculture 233:181–195

    Article  Google Scholar 

  • Reyes-Marchán R, Hidalgo-Mogollón A (2001) Producción en laboratorio de post larvas de Macrobrachium americanum (Decapoda: Palaemonidae (Camarón de río). Undergraduate Thesis to obtain the degree in Fishery Engineering. Universidad Nacional de Tumbes, Facultad de Ingeniería Pesquera, Escuela Académico Profesional de Ingeniería Pesquera. Tumbes, Perú

  • Rivero-Rodríguez S, Beaumont AR, Lora-Vilchis MC (2007) The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 263:199–210

    Article  CAS  Google Scholar 

  • Roe JH, Bailey JM, Gray RR, Robinson JN (1961) Complete removal of glycogen from tissues by extraction with cold trichloroacetic acid solution. J Biol Chem 236:1244–1246

    PubMed  CAS  Google Scholar 

  • Ross LG, Beveridge MCM (1995) Is a better strategy necessary for development of native species for aquaculture? A Mexican case study. Aquacult Fish Manag 26:539–547

    Google Scholar 

  • Ross LG, Martinez-Palacios CA, Morales EJ (2008) Developing native fish species for aquaculture: the interacting demands of biodiversity, sustainable aquaculture and livelihoods. Aquac Res 39:675–683

    Article  Google Scholar 

  • Roustaian P, Kamarudin MS, Omar H, Saad CR, Ahmad MH (1999) Changes in fatty acid profile during larval development of freshwater prawn Macrobrachium rosenbergii (De Man). Aquac Res 30:815–824

    Article  Google Scholar 

  • Roychoudhury P, Mukherjee M (2013) Role of algal mixture in food intake of Macrobrachium rosenbergii during larval development. Indian J Geo Mar Sci 42:647–652

    Google Scholar 

  • Sandifer PA, Joseph JD (1976) Growth responses and fatty acid composition of juvenile prawns (Macrobrachium rosenbergii) fed a prepared ration augmented with shrimp head oil. Aquaculture 8:129–138

    Article  CAS  Google Scholar 

  • Stryer L (1995) Fatty acid metabolism. Biochemistry 3:469–493

    Google Scholar 

  • Thinh LV, Renaud SM, Parry DL (1999) Evaluation of recently isolated Australian tropical microalgae for the enrichment of the dietary value of brine shrimp, Artemia nauplii. Aquaculture 170:161–173

    Article  CAS  Google Scholar 

  • Tziouveli V, Hall M, Smith GG (2012) Evaluation of lipid-enriched Artemia on the reproductive performance of the white-striped cleaner shrimp, Lysmata amboinensis. Aquac Int 20:201–211

    Article  CAS  Google Scholar 

  • Van Stappen G (1996) Introduction, biology and ecology of Artemia. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture, Vol 361. FAO fisheries technical paper, FAO, Rome, pp 79-264

  • Vega-Villasante F, Martínez-López EA, Espinosa-Chaurand LD, Cortés-Lara MC, Nolasco-Soria H (2011) Growth and survival of prawn (Macrobrachium tenellum) in experimental cultures during summer and autumn in the tropical Mexican Pacific coast. Trop Subtrop Agroecosyt 14:581–588

    Google Scholar 

  • Vega-Villasante F, García-Guerrero MU, Cortés-Jacinto E, Yamasaki-Granados S, Montoya-Martínez CE, Vargas-Ceballos MA, Chong-Carrillo O, Rubio-Padilla MA, Guzmán-Arroyo M, Carrillo-Farnés OV (2014) Los camarones de agua dulce del género Macrobrachium: biología, ecología y explotación. In: Cifuentes-Lemus JL, Cupul-Magaña FG (eds) Temas sobre investigaciones costeras. Universidad de Guadalajara, Jalisco, pp 273–315

    Google Scholar 

  • Voltolina D, López-Elías JA (2002) Cultivos de apoyo para la acuacultura: Tendencias e innovaciones. In: Martínez-Córdova LR (ed) Camaronicultura, avances y tendencias. AGT Editores, Mexico pp 23-35

  • Wantanabe T (1993) Importance of docosahexaenoic acid in marine larval fish. J World Aquacult Soc 24:152–161

    Article  Google Scholar 

  • Watanabe T (1982) Lipid nutrition in fish. Comp Biochem Physiol A 73:3–15

    Google Scholar 

  • Webster CD, Lovell RT (1990) Response of striped bass larvae fed brine shrimp from different sources containing different fatty acid compositions. Aquaculture 90:49–61

    Article  CAS  Google Scholar 

  • Yamasaki-Granados S, García-Guerrero M, Vega-Villasante F, Castellanos-León F, Cavalli RO, Cortés-Jacinto E (2013) Experimental culture of the river prawn Macrobrachium americanum larvae (Bate, 1868), with emphasis on feeding and stocking density effect on survival. Lat Am J Aquat Res 41:793–800

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. 2nd edition. In: Prentice-Hall (ed) Englewood Cliffs, New Jersey, 718 pp 

Download references

Acknowledgements

We thank P. Monsalvo, A. Greene, J. Garzón, R. Herrera, and G. Mendoza from CIBNOR for their technical assistance, and A. Álvarez, who provided advice for the development of the culture system. We thank G. Talamantes for his help with the catching of adult prawn specimens, and Ingrid Mascher Gramlich her editorial services. Funding was provided by CONACYT project CB2010/156252, 2014/227565, AMEXCID CTC/06038/14. Y.M.M. is a CONACYT fellowship recipient (grant 2021420084). M. Garcia-Guerrero thanks IPN EDI and COFAA programs for their financial support. E. Cortés-Jacinto is a fellow of CONACYT (sabbatical project 262236–2015-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edilmar Cortés-Jacinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Martínez, Y., García-Guerrero, M.U., Lora-Vilchis, M.C. et al. Nutritional effect of Artemia nauplii enriched with Tetraselmis suecica and Chaetoceros calcitrans microalgae on growth and survival on the river prawn Macrobrachium americanum larvae. Aquacult Int 26, 1001–1015 (2018). https://doi.org/10.1007/s10499-018-0264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0264-0

Keywords

Navigation