Aquaculture International

, Volume 26, Issue 3, pp 899–911 | Cite as

Effect of nitrite exposure on oxygen-carrying capacity and gene expression of NF-κB/HIF-1α pathway in gill of bighead carp (Aristichthys nobilis)

  • Yan Lin
  • Ling-Hong Miao
  • Wu-Xiao Zhang
  • Wen-Jing Pan
  • Hua-Liang Liang
  • Xian-Ping Ge
  • Yan-Shun Xu
  • Bo Liu
  • Ming-Chun Ren
  • Qun-Lan Zhou
  • Si-Lei Xia


Nitrite (NO2) contamination of water can severely impact the health of aquatic life and is a major concern for commercial aquaculture. In order to study the effect of nitrite on Aristichthys nobilis, we investigated the oxygen-carrying capacity, NF-κB/HIF-1α pathway, and the gill tissue structure under nitrite stress. In the current study, bighead carp (initial weight 180.05 ± 0.092 g) were exposed to nitrite (48.634 mg/L) for 96 h and then for 96 h recovery test. After nitrite exposure for 6 h, hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) mRNA expression increased significantly in the gill of bighead carp (P < 0.05). After nitrite exposure for 12 h, hemoglobin (Hb) and methemoglobin reductase (MHBR) content in blood decreased significantly (P < 0.05); TLR4 mRNA expression increased significantly (P < 0.05). After nitrite exposure for 24 h, methemoglobin (MetHb) content increased significantly (P < 0.05). After recovery test, all the indicators except TLR4 mRNA expression level recovered to initial level. In conclusion, nitrite exposure can affect hemoglobin dynamics, as oxidization of nitrite by hemoglobin results in the reduction of Hb to MetHb leading to hypoxia and nitrite exposure can also result into gill tissue damage. In the face of nitrite exposure, NF-κB and HIF-1α mRNA expression level increased immediately to protect the body from oxidative damage and eased hypoxic condition caused by nitrite. It was also observed that nitrite damage is recoverable in Aristichthys nobilis, but it may be need more than 96 h.


Nitrite exposure NF-κB/HIF-1α pathway Aristichthys nobilis 



We would like to thank the post graduate students of Fish Disease and Nutrition Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), PR China, for their help throughout the research period.

Author contributions

Yan Lin, Ling-Hong Miao, and Xian-Ping Ge conceived the idea and designed the project. Wu-Xiao Zhang, Wen-Jing Pan, Hua-Liang Liang, Yan-Shun Xu, Bo Liu, Ming-Chun Ren, Qun-Lan Zhou, and Si-Lei Xia performed the experiments. Yan Lin analyzed the data and wrote the manuscript. All authors have read and approved the final manuscript.


This work was supported by China Agriculture Research System special project of National Conventional Freshwater Fishery Industry (Grant No.CARS-46), by the National Nonprofit Institute Research Grant of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (Grant No.2015GBFM25), and by program of Collaborative innovation center of food safety and quality control in Jiangsu Province.

Compliance with ethical standards

All experimental protocols and feeding scheme were approved by the Bioethical Committee of Freshwater Fisheries Research Center (FFRC) of Chinese Academy of Fishery Sciences (CAFS) (BC 2013863, 9/2013).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Aggergaard S, Jensen FB (2001) Cardiovascular changes and physiological response during nitrite exposure in rainbow trout. J Fish Biol 59(1):13–27CrossRefGoogle Scholar
  2. Arillo A, Gaino E, Margiocco C, Mensi P, Schenone G (1984) Biochemical and ultrastructural effects of nitrite in rainbow trout: liver hypoxia as the root of the acute toxicity mechanism. Environ Res 34(1):135–154CrossRefPubMedGoogle Scholar
  3. Avnimelech Y, Weber B, Hepher B, Milstein A, Zorn M (2008) Studies in circulated fish ponds: organic matter recycling and nitrogen transformation. Aquac Res 17(4):231–242CrossRefGoogle Scholar
  4. Bath RN, Eddy FB (1980) Transport of nitrite across fish gills. J Exp Zool A Ecol Genet Physiol 214(1):119–121Google Scholar
  5. Benli AÇK, Köksal G, Özkul A (2008) Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus, L.): effects on gill, liver and kidney histology. Chemosphere 72(9):1355–1358CrossRefPubMedGoogle Scholar
  6. Beraud C, Henzel WJ, Baeuerle PA (1999) Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation [J]. Proc Natl Acad Sci U S A 96(2):429–434CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blanco O, Meade T (1980) Effect of dietary ascorbic acid on susceptibility of steelhead trout (Salmo gairdneri) to nitrite toxicity. Rev Biol Trop 28:91–107PubMedGoogle Scholar
  8. Bruick RK, McKnight SL (2001) A conserved family of pmlyl-4 hydrox-ylases tiiat modify HIF [J]. Science 294(5545):1337–1340CrossRefPubMedGoogle Scholar
  9. Cameron JN (1971) Methemoglobin in erythrocytes of rainbow trout. Comp Biochem Physiol A Physiol 40(3):743–749CrossRefGoogle Scholar
  10. Collins MT, Gratzek JB, Shotts JEB et al (1975) Nitrification in an aquatic recirculating system. J Fish Res Board Can 32:2025–2031CrossRefGoogle Scholar
  11. Das PC, Ayyappan S, Jena JK, Das BK (2004a) Nitrite toxicity in Cirrhinus mrigala, (Ham.): acute toxicity and sub-lethal effect on selected haematological parameters. Aquaculture 235(1–4):633–644CrossRefGoogle Scholar
  12. Das PC, Ayyappan S, Jena JK, Das BK (2004b) Acute toxicity of ammonia and its sub-lethal effects on selected haematological and enzymatic parameters of mrigal, Cirrhinus mrigala (Hamilton). Aquac Res 35:134–143CrossRefGoogle Scholar
  13. Das PC, Ayyappan S, Jena JK, Das BK (2004c) Effect of sub-lethal nitrite on selected haematological parameters in fingerling Catla catla, (Hamilton). Aquac Res 35(9):874–880CrossRefGoogle Scholar
  14. Doblander C, Lackner R (1996) Metabolism and detoxification of nitrite by trout hepatocytes. Biochim Biophys Acta 1289(2):270–274CrossRefPubMedGoogle Scholar
  15. Fandrey J, Gorr TA, Gassmann M (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71(4):642–651CrossRefPubMedGoogle Scholar
  16. Gao R (2014) Molecular cloning and functional analysis on genes related to NF-κB signal pathway of orange-spotted grouper, Epinephelus coioides. Dissertation Hainan UniversityGoogle Scholar
  17. Gisbert E, Rodriguez A, Cardona L et al (2004) Recovery of Siberian sturgeon yearlings after an acute exposure to environmental nitrite: changes in the plasmatic ionic balance, Na+-K+ ATPase activity, and gill histology. Aquaculture 239(1):141–154CrossRefGoogle Scholar
  18. Görlach A, Bonello S (2008) The cross-talk between NF-κB and HIF-1: further evidence for a significant liaison. Biochem J 412(3):17–19CrossRefGoogle Scholar
  19. Hargreaves JA (1998) Nitrogen biogeochemistry of aquaculture ponds 1. Aquaculture 166(3–4):181–212CrossRefGoogle Scholar
  20. Harris RR, Coley S (1991) The effects of nitrite on chloride regulation in the crayfish Pacifastacus leniusculus Dana (Crustacea: Decapoda). J Comp Physiol B 161(161):199–206Google Scholar
  21. Heath AG (1995) Water pollution and fish physiology. CRC PressGoogle Scholar
  22. Hirono I, Nam BH, Kurobe T, Aoki T (2000) Molecular cloning, characterization, and expression of TNF CDNA and gene from Japanese flounder Paralychthys olivaceus. J Immunol 165(8):4423–4427CrossRefPubMedGoogle Scholar
  23. Hofer R, Gatumu E (1994) Necrosis of trout retina (Oncorhynchus mykiss ) after sublethal exposure to nitrite. Arch Environ Contam Toxicol 26(26):119–123CrossRefGoogle Scholar
  24. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468CrossRefPubMedGoogle Scholar
  25. Jensen FB (1993) Influence of nucleoside triphosphates, inorganic salts, NADH, catecholamines, and oxygen saturation on nitrite-induced oxidation of rainbow trout haemoglobin. Fish Physiol Biochem 12(2):111–117CrossRefPubMedGoogle Scholar
  26. Jensen FB (2003) Nitrite disrupts multiple physiological functions in aquatic animals. Comp Biochem Physiol A Mol Integr Physiol 135(1):9–24CrossRefPubMedGoogle Scholar
  27. Jensen FB, Rohde S (2010) Comparative analysis of nitrite uptake and hemoglobin-nitiite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies. Am J Physiol Regul Integr Comp Physiol 298:972–982CrossRefGoogle Scholar
  28. Kamstra A, Span JA, Weerd JHV (1997) The acute toxicity and sublethal effects of nitrite on growth and feed utilization of European eel, Anguilla anguilla (L.) Aquac Res 27(27):903–911Google Scholar
  29. Kroupova H, Machova J, Svobodova Z (2005) Nitrite influence on fish: a review. Vet Med 50(11):461–471CrossRefGoogle Scholar
  30. Kroupova H, Machova J, Piackova V (2008) Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 71(3):813–820CrossRefPubMedGoogle Scholar
  31. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295(5556):858–861CrossRefPubMedGoogle Scholar
  32. Lang T, Peters G, Hoffmann R, Meyer EI (1987) Experimental investigations on the toxicity of ammonia: effects on ventilation frequency, growth, epidermal mucous cells, and gill structure of rainbow trout (Salmo gairdneri). Dis Aquat Org 3(3):159–165CrossRefGoogle Scholar
  33. Lee EY, Park HH, Kim YT, Chung JK, Choi TJ (2001) Cloning and sequence analysis of the interleukin-8 gene from flounder (Paralichthys olivaceous). Gene 274(1–2):237–243CrossRefPubMedGoogle Scholar
  34. Martinez CBR, Souza MM (2002) Acute effects of nitrite on ion regulation in two neotropical fish species. Comp Biochem Physiol A Mol Integr Physiol 133(1):151–160CrossRefPubMedGoogle Scholar
  35. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275CrossRefPubMedGoogle Scholar
  36. Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Activation of the HIF pathway in cancer. Curr Opin Genet Dev 11:293–299CrossRefPubMedGoogle Scholar
  37. Mladineo Ivona (2009) Block Barbara A. Expression of Hsp70, Na+/K+ ATP-ase, HIF-1α, IL-1βand TNF-[alpha] in captive Pacific bluefin tuna (Thunnus orientalis) after chronicwarm and cold exposure. J Exp Mar Biol Ecol 374(1):51–57CrossRefGoogle Scholar
  38. Nam BH, Byon JY, Kim YO, Park EM, Cho YC, Cheong JH (2007) Molecular cloning and characterisation of the flounder (Paralichthys olivaceus) interleukin-6 gene. Fish Shellfish Immunol 23(1):231–236CrossRefPubMedGoogle Scholar
  39. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7):423–427CrossRefPubMedGoogle Scholar
  40. Onken H, Putzenlechner M (1995) A V-ATPase drives active, electrogenic and Na+−independent Cl absorption across the gills of Eriocheir sinensis. J Exp Biol 198(Pt3):767–774PubMedGoogle Scholar
  41. Park H, Lee HE (2007) Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress Chaperones 12(3):275–282CrossRefPubMedPubMedCentralGoogle Scholar
  42. Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, Choe KH, Strassheim D, Pitts TM, Tracey KJ, Abraham E (2003) Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 284(4):C870–C879CrossRefPubMedGoogle Scholar
  43. Post GW (1983) Textbook of fish health. Textbook of Fish HealthGoogle Scholar
  44. Rahman MS, Thomas P (2007) Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1α and HIF-2α, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus). Gene 396(2):273–282CrossRefPubMedGoogle Scholar
  45. Rankin JC, Stagg RM, Bolis L (1982) Effects of pollutants on gills. Cambridge Univ Press Lond 207:C220Google Scholar
  46. Rissanen E, Tranberg HK, Sollid J, Nilsson GE, Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (hif-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 209:994–1003CrossRefPubMedGoogle Scholar
  47. Scarano G, Saroglia MG (1984) Recovery of fish from functional and haemolytic anaemia after brief exposure to a lethal concentration of nitrite. Aquaculture 43(4):421–426CrossRefGoogle Scholar
  48. Scarano G, Saroglia MG, Gray RH, Tibaldi E (1984) Hematological responses of sea bass (Dicentrarchus labrax) to sublethal nitrite exposures. Trans Am Fish Soc 113(3):360–364CrossRefGoogle Scholar
  49. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15(1):551–578CrossRefPubMedGoogle Scholar
  50. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88(4):1474–1480CrossRefPubMedGoogle Scholar
  51. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8(4 Suppl):S62–S67CrossRefPubMedGoogle Scholar
  52. Smart G (1976) The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). J Fish Biol 8(6):471–475CrossRefGoogle Scholar
  53. Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141(3):325–334CrossRefPubMedPubMedCentralGoogle Scholar
  54. Soitamo AJ, Rabergh CM, Gassmann M, Sistonen L, Nikinmaa M (2001) Characterization of a hypoxia-inducible factor (HIF-1α) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem 276(23):19699–19705CrossRefPubMedGoogle Scholar
  55. Sollid J, Rissanen E, Tranberg HK, Thorstensen T, Vuori KAM, Nikinmaa M, GE N (2006) HIF-1α and iNOS levels in crucian carp gills during hypoxia-induced transformation. J Comp Physiol B 176(4):359–369CrossRefPubMedGoogle Scholar
  56. Spencer P, Pollock R, Dubé M (2008) Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat Toxicol 90(4):300–309CrossRefPubMedGoogle Scholar
  57. Stormer J, Jensen FB, Rankin JC (2011) Uptake of nitrite, nitrate, and bromide in rainbow trout, Oncorhynchus mykiss: effects on ionic balance. Can J Fish Aquat Sci 53(9):1943–1950CrossRefGoogle Scholar
  58. Sukkar MB, XieS KNM et al (2006) Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol 118(3):641–648CrossRefPubMedGoogle Scholar
  59. Svobodová Z, Máchová J, Drastichová J, Groch L, Lusková V, Poleszczuk G, Velíšek J, Kroupová H (2005) Haematological and biochemical profiles of carp blood following nitrite exposure at different concentrations of chloride. Aquac Res 36(12):1177–1184CrossRefGoogle Scholar
  60. Terova G, Rimoldi S, Corà S, Bernardini G, Gornati R, Saroglia M (2008) Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279(1):150–159CrossRefGoogle Scholar
  61. Tomasso JR (2012) Environmental nitrite and aquaculture: a perspective. Aquac Int 20(6):1107–1116CrossRefGoogle Scholar
  62. Tomasso JR, Grosell M (2005) Physiological basis for large differences in resistance to nitrite among freshwater and freshwater-acclimated euryhaline fishes. Environ Sci Technol 39(1):98–102CrossRefPubMedGoogle Scholar
  63. Tomasso JR, Simco BA, Davis KB (1979) Chloride inhibition of nitrite-induced methemoglobinemia in channel catfish (Ictalurus punctatus). J Fish Res Board Can 36:1141–1144CrossRefGoogle Scholar
  64. Van HD, Vosloo A, Nikinmaa M (2004) Effects of short-term copper exposure on gill structure, metallothionein and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 69(3):271–280CrossRefGoogle Scholar
  65. Wedemeyer GA, Yasutake WT (1978) Prevention and treatment of nitrite toxicity in juvenile steelhead trout (Salmo gairdneri). J Fish Res Board Can 35:822–827CrossRefGoogle Scholar
  66. Wenger RH, Gassmann M (1997) Oxygen (es) and the hypoxia-inducible factor-1. Biol Chem 378(7):609–616PubMedGoogle Scholar
  67. Williams EM, Eddy FB (1986) Chloride uptake in freshwater teleosts and its relationship to nitrite uptake and toxicity. J Comp Physiol B 156(6):867–872CrossRefGoogle Scholar
  68. Wise DJ, Tomasso JR, Brandt TM (1988) Ascorbic acid inhibition of nitrite-induced methemoglobinemia in channel catfish. Prog Fish Cult 50(2):77–80CrossRefGoogle Scholar
  69. Yazawa R, Kondo H, Hirono I, Aoki T (2007) Cloning and characterization of the Iκbα gene from Japanese flounder, Paralichthys olivaceus. Fish Shellfish Immunol 23(4):808–814CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yan Lin
    • 1
  • Ling-Hong Miao
    • 1
    • 2
  • Wu-Xiao Zhang
    • 2
  • Wen-Jing Pan
    • 2
  • Hua-Liang Liang
    • 2
  • Xian-Ping Ge
    • 1
    • 2
  • Yan-Shun Xu
    • 4
  • Bo Liu
    • 1
    • 2
  • Ming-Chun Ren
    • 1
  • Qun-Lan Zhou
    • 1
  • Si-Lei Xia
    • 3
  1. 1.Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research CenterChinese Academy of Fishery SciencesWuxiPeople’s Republic of China
  2. 2.Wuxi Fisheries CollegeNanjing Agricultural UniversityWuxiChina
  3. 3.College of Animal Science and TechnologyNanjing Agricultural UniversityWuxiChina
  4. 4.Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu ProvinceWuxiChina

Personalised recommendations