Skip to main content

Advertisement

Log in

Oxygen, Hydrogen, Boron and Lithium Isotope Data of a Natural Spring Water with an Extreme Composition: A Fluid from the Dehydrating Slab?

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The chemical and isotope compositions of slab dehydration fluids from convergent margins have been theorized by many authors who have adopted several approaches. A direct collection of natural water is possible only in an oceanic environment, despite several difficulties in estimating the deepest component due to the mixing with seawater or hydrothermal fluids from the ridge. Accordingly, the study of melt inclusions is a valuable alternative. However, the latter mainly represents high temperature/pressure conditions in deep magmatic or metamorphic settings. Here, we present new H, O, Li and B isotope along with a revision of previously published chemical data from a potential natural example of slab dehydration water, sampled in a forearc region and affected by low-temperature metamorphism and serpentinization processes (Aqua de Ney, Northern California). Its extreme composition challenges the understanding of its origin and deep temperature, but this work is a further step on a topic of increasing interest for several scientists from different academic disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. It should be noted that pH = 12.7 was obtained by the PHREEQCI-code (Parkhurst and Appelo 2013) and water-free gas (~ 82% of CH4; Mariner et al. 2003) equilibrium at T = 12 °C (Supplementary File S1). This was also done to minimize the possible effects of CO2(g) absorption from atmosphere and probe alkaline error that could occur during field measurements.

References

  • Alt JC, Shanks WC III (2006) Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth Planet Sci Lett 242:272–285. doi:10.1016/j.epsl.2005.11.063

    Article  Google Scholar 

  • Awaleh MO, Boschetti T, Soubaneh YD., Baudron P, Kawalieh AD, Dabar OA, Ahmed MM, Ahmed SI, Daoud MA, Egueh NM, Mohamed J (2017) Geochemical study of the Sakalol-Harralol geothermal field (Republic of Djibouti): Evidences of a low enthalpy aquifer between Manda-Inakir and Asal rift settings. J Volcanol Geoth Res 331:26–52. doi:10.1016/j.jvolgeores.2016.11.008.

  • Barnes I (1972) Water-mineral reactions related to potential fluid-injection problems. In: Cook TD (ed) Underground waste management and environmental implications, vol AAPG memoir volume 18. AAPG Memoir, American Association of Petroleum Geologists, Tulsa, Oklahoma, USA, pp 294–297. doi:10.1306/M18373C45

  • Barnes I, Rapp JB, O’Neil JR (1972) Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization. Contrib Miner Petrol 35:263–276

    Article  Google Scholar 

  • Beaudoin G, Therrien P (2009) The updated web stable isotope fractionation calculator. In: De Groot PA (ed) Handbook of stable isotope analytical techniques, vol II. Elsevier, Amsterdam, pp 1120–1122

    Google Scholar 

  • Benton LD, Ryan JG, Tera F (2001) Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet Sci Lett 187:273–282. doi:10.1016/S0012-821X(01)00286-2

    Article  Google Scholar 

  • Berkstresser CFJ (1968) Data for springs in the northern coast ranges and Klamath Mountains of California. United States, Department of Interior, Geological Survey, Water Resources Division, Menlo Park, California

  • Bethke CM, Yeakel S (2008) The geochemist’s workbench®—release 7. GWB Essentials Guide. Hydrogeology Program. University of Illinois, p 489

  • Böhlke JK, Shanks III WC (1994) Stable isotope study of hydrothermal vents at Escanaba Trough: observed and calculated effects of sediment–seawater interaction. In: Morton JL, Zierenberg RA, Reiss CA (eds) Geologic, hydrothermal, and biologic studies at Escanaba Trough, Gorda Ridge, Offshore Northern California, vol U.S. Geological Survey Bulletin 2022. U.S. Department of the Interior, U.S. Geological Survey, Denver, CO, pp 223–255

  • Boschetti T, Cortecci G, Bolognesi L (2003) Chemical and isotopic study of the shallow groundwater system of Vulcano Island, Aeolian Archipelago, Italy: an update. GeoActa 2:1–34

  • Boschetti T, Toscani L (2008) Springs and streams of the Taro-Ceno Valleys (Northern Apennine, Italy): reaction path modeling of waters interacting with serpentinized ultramafic rocks. Chem Geol 257:76–91. doi:10.1016/j.chemgeo.2008.08.017

    Article  Google Scholar 

  • Boschetti T, Toscani L, Shouakar-Stash O, Iacumin P, Venturelli G, Mucchino C, Frape SK (2011) Salt waters of the Northern Apennine Foredeep Basin (Italy): origin and evolution. Aquat Geochem 17:71–108. doi:10.1007/s10498-010-9107-y

    Article  Google Scholar 

  • Boschetti T, Etiope G, Pennisi M, Romain M, Toscani L (2013a) Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): terrestrial serpentinization or mixing with brine? Appl Geochem 32:17–25. doi:10.1016/j.apgeochem.2012.08.018

    Article  Google Scholar 

  • Boschetti T, Etiope G, Toscani L (2013b) Abiotic methane in the hyperalkaline springs of Genova, Italy. Procedia Earth Planet Sci 7:248–251. doi:10.1016/j.proeps.2013.02.004

    Article  Google Scholar 

  • Boschetti T, Toscani L, Salvioli Mariani E (2015) Boron isotope geochemistry of Na-bicarbonate, Na-chloride, and Ca-chloride waters from the Northern Apennine Foredeep basin: other pieces of the sedimentary basin puzzle. Geofluids 15:546–562. doi:10.1111/gfl.12124

    Article  Google Scholar 

  • Boschetti T, Angulo B, Cabrera F, Vásquez J, Montero RL (2016) Hydrogeochemical characterization of oilfield waters from southeast Maracaibo Basin (Venezuela): diagenetic effects on chemical and isotopic composition. Mar Pet Geol 73:228–248. doi:10.1016/j.marpetgeo.2016.02.020

    Article  Google Scholar 

  • Butterfield DA, McDuff RE, Franklin J, Wheat CG (1994) Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, Slack JF (eds) Proceedings of the ocean drilling program. Scientific results, pp 395–410

  • Campbell AC, German CR, Palmer MR, Gamo T, Edmond JM (1994) Chemistry of hydrothermal fluids from the Escanaba Trough, Gorda Ridge. Geologic, hydrothermal and biologic studies at Escanaba Trough, Gorda Ridge, Offshore Northern California. In: Morton JL, Zierenberg RA, Reiss CA (eds) Geologic, hydrothermal, and biologic studies at Escanaba Trough, Gorda Ridge, Offshore Northern California, vol U.S. Geological Survey Bulletin 2022. U.S. Department of the Interior, U.S. Geological Survey, pp 201–221

  • Churchill RK, Hill RL (2000) A general location guide for ultramafic rocks in California—areas more likely to contain naturally occurring asbestos. Department of Conservation, Division of Mines and Geology

  • Clayton RN, Mayeda TK (1999) Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta 63:2089–2104. doi:10.1016/S0016-7037(99)00090-3

    Article  Google Scholar 

  • Clog M, Aubaud C, Cartigny P, Dosso L (2013) The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet Sci Lett 381:156–165. doi:10.1016/j.epsl.2013.08.043

    Article  Google Scholar 

  • Cortecci G, Boschetti T, Mussi M, Herrera Lameli C, Mucchino C, Barbieri M (2005) New chemical and isotopic data on waters of El Tatio geothermal field, Northern Chile. Geochem J 39:547–571. doi:10.2343/geochemj.39.547

    Article  Google Scholar 

  • Croghan C, Egeghy PP (2003) Methods of dealing with values below the limit of detection using SAS. Paper presented at the Southeastern SAS User Group, St. Petersburg, FL

  • Cullen JT (2013) Halogen chemistry and stable chlorine isotope composition of thermal springs and arc lavas in the Cascade Arc. The University of Texas at Austin

  • Cullen JT, Barnes JD, Hurwitz S, Leeman WP (2015) Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen concentrations and chlorine isotope compositions. Earth Planet Sci Lett 426:225–234. doi:10.1016/j.epsl.2015.06.052

    Article  Google Scholar 

  • Decitre S, Buatier M, James R (2004) Li and Li isotopic composition of hydrothermally altered sediments at Middle Valley, Juan De Fuca. Chem Geol 211:363–373. doi:10.1016/j.chemgeo.2004.07.005

    Article  Google Scholar 

  • Elder D, Cashman SM (1992) Tectonic control and fluid evolution in the Quartz Hill, California, lode gold deposits. Econ Geol 87:1795–1812

    Article  Google Scholar 

  • Feth JH, Rogers SM, Roberson CE (1961) Aqua de Ney, California, a spring of unique chemical character. Geochim Cosmochim Acta 22:75–86. doi:10.1016/0016-7037(61)90107-7

    Article  Google Scholar 

  • Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157. doi:10.1126/science.1073995

    Article  Google Scholar 

  • Fouquet Y et al (1998) Escanaba Trough: Central Hill (Site 1038). In: Proceedings ocean drilling program, initial reports, shipboard scientific party, College Station, TX, pp 253–298

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368. doi:10.1093/petrology/egm021

    Article  Google Scholar 

  • Fuis GS, Zucca JJ, Mooney WD, Milkereit B (1987) A geologic interpretation of seismic-refraction results in northeastern California. Geol Soc Am Bull 98:53–65. doi:10.1130/0016-7606(1987)98<53:AGIOSR>2.0.CO;2

    Article  Google Scholar 

  • García-Ruiz JM, Nakouzi E, Kotopoulou E, Tamborrino L, Steinbock O (2017) Biomimetic mineral self-organization from silica-rich spring waters. Sci Adv 3:e1602285. doi:10.1126/sciadv.1602285

    Article  Google Scholar 

  • Gieskes JM, Mahn C, Schnetzger B (2000) Data report: trace element geochemistry of I, Br, F, H3PO4, Ba, and Mn in pore waters of the Escanaba Trough, Sites 1037 and 1038. In: Zierenberg RA, Fouquet Y, Miller DJ, Normark WR (eds) Proceedings ocean drilling program, scientific results, Texas A&M University, College Station, TX, pp 1–16

  • Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 221–256

    Chapter  Google Scholar 

  • Goff F, Bergfeld D, Janik CJ, Counce D, Stimac JA (2001) Geochemical data on waters, gases, rocks, and sediments from the Geysers–Clear Lake region, California (1991–2000) vol LA-13882-MS. Los Alamos National Laboratory, Los Alamos, NM

  • Gourcy LL, Groening M, Aggarwal PK (2007) Stable oxygen and hydrogen isotopes in precipitation. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of developing science. Springer, Dordrecht, The Netherlands, pp 39–51

  • Hansen CT, Meixner A, Kasemann SA, Bach W (2017) New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations. Geochim Cosmochim Acta 217:51–79. doi:10.1016/j.gca.2017.08.014

    Article  Google Scholar 

  • Hurwitz S, Mariner RH, Fehn U, Snyder GT (2005) Systematics of halogen elements and their radioisotopes in thermal springs of the Cascade Range, Central Oregon, Western USA. Earth Planet Sci Lett 235:700–714. doi:10.1016/j.epsl.2005.04.029

    Article  Google Scholar 

  • James RH, Allen DE, Seyfried WE (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 °C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim Cosmochim Acta 67:681–691. doi:10.1016/S0016-7037(02)01113-4

    Article  Google Scholar 

  • Johnson CA, Harlow GE (1999) Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone. Geology 27:629–632. doi:10.1130/0091-7613(1999)027<0629:GJAAWF>2.3.CO;2

    Article  Google Scholar 

  • Kong XZ, Tutolo BM, Saar MO (2013) DBCreate: a SUPCRT92-based program for producing EQ3/6, TOUGHREACT, and GWB thermodynamic databases at user-defined T and P. Comput Geosci 51:415–417. doi:10.1016/j.cageo.2012.08.004

    Article  Google Scholar 

  • Le Roux PJ, Shirey SB, Hauri EH, Perfit MR (2003) Boron isotope compositions of selected fresh MORB glasses from the northern EPR (8-10° N): implications for MORB magma contamination. American Geophysical Union, Fall Meeting 2003, abstract #V51A-03. http://adsabs.harvard.edu/abs/2003AGUFM.V51A..03L

  • Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595. doi:10.1093/petrology/egq030

    Article  Google Scholar 

  • Lee CTA, Oka M, Luffi P, Agranier A (2008) Internal distribution of Li and B in serpentinites from the Feather River Ophiolite, California, based on laser ablation inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst 9:Q12011. doi:10.1029/2008GC002078

    Google Scholar 

  • Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem Geol 212:101–124. doi:10.1016/j.chemgeo.2004.08.010

    Article  Google Scholar 

  • Liakhovitch V, Quick JE, Gregory RT (2005) Hydrogen and oxygen isotope constraints on hydrothermal alteration of the Trinity peridotite, Klamath Mountains, California. Int Geol Rev 47:203–214. doi:10.2747/0020-6814.47.2.203

    Article  Google Scholar 

  • Lu FH (2016) How long is enough: CO2-H2O equilibration for δ18O analysis in saline formation waters? Rapid Commun Mass Spectrom 30:1647–1652. doi:10.1002/rcm.7599

  • Lui-Heung C, Savov IP, Ryan JG (2007) Lithium isotope study of peridotite-slab fluid interactions in the Mariana forearc mantle wedge. In: American Geophysical Union, Fall Meeting 2007, abstract #V43A-03

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751. doi:10.1016/j.gca.2004.08.004

    Article  Google Scholar 

  • Magna T, Wiechert U, Grove TL, Halliday AN (2006) Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet Sci Lett 250:428–443. doi:10.1016/j.epsl.2006.08.019

    Article  Google Scholar 

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 233:1–16. doi:10.1016/j.epsl.2004.04.030

    Article  Google Scholar 

  • Mariner RH, Evans WC, Huebner M (1998) Preliminary chemical and isotopic data for waters from springs and wells on and near medicine Lake Volcano, Cascade Range, Northern California. U.S. Geological Survey, Menlo Park, California

  • Mariner RH, Evans WC, Presser TS, White LD (2003) Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon, and Washington: sedimentary or volcanic in origin? J Volcanol Geoth Res 121:99–114. doi:10.1016/S0377-0273(02)00414-6

    Article  Google Scholar 

  • Mariner RH, Venezky DY, Hurwitz S (2006) Chemical and isotopic database of water and gas from hydrothermal systems with an emphasis for the western United States

  • Marschall HR, von Strandmann PAP, Seitz HM, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580. doi:10.1016/j.epsl.2007.08.005

    Article  Google Scholar 

  • Martin E, Bindeman I, Grove TL (2011) The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction. Contrib Miner Petrol 162:945–960. doi:10.1007/s00410-011-0633-4

    Article  Google Scholar 

  • McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875. doi:10.1016/j.gca.2008.10.032

    Article  Google Scholar 

  • McCollom TM, Seewald JS, German CR (2015) Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge. Geochim Cosmochim Acta 156:122–144. doi:10.1016/j.gca.2015.02.022

    Article  Google Scholar 

  • McCrory PA, Blair JL, Waldhauser F, Oppenheimer DH (2012) Juan de Fuca slab geometry and its relation to Wadati–Benioff zone seismicity. J Geophys Res Solid Earth. doi:10.1029/2012JB009407

    Google Scholar 

  • Meyer-Dombard DR, Woycheese KM, Yargıçoğlu EN, Cardace D, Shock EL, Güleçal-Pektas Y, Temel M (2015) High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey. Front Microbiol 5:1–13. doi:10.3389/fmicb.2014.00723

    Article  Google Scholar 

  • Mitchell EC et al (2010) Nitrogen sources and recycling at subduction zones: insights from the Izu–Bonin–Mariana arc. Geochem Geophys Geosyst. doi:10.1029/2009GC002783

    Google Scholar 

  • Monnin C et al (2014) Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences 11:5687. doi:10.5194/bg-11-5687-2014

    Article  Google Scholar 

  • Morishita T, Arai S, Ishida Y (2007) Trace element compositions of jadeite (+omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fluid processes in subduction zones. Isl Arc 16:40–56. doi:10.1111/j.1440-1738.2007.00557.x

    Article  Google Scholar 

  • Morrill PL, Kuenen JG, Johnson OJ, Suzuki S, Rietze A, Sessions AL, Nealson KH (2013) Geochemistry and geobiology of a present-day serpentinization site in California: the Cedars. Geochim Cosmochim Acta 109:222–240. doi:10.1016/j.gca.2013.01.043

    Article  Google Scholar 

  • Mottl MJ (2009) Highest pH? Geochemical News 141. https://www.geochemsoc.org/publications/geochemicalnews/gn141oct09/highestph/. Accessed 17 Sep 2017

  • Nathenson M, Thompson JM, White LD (2003) Slightly thermal springs and non-thermal springs at Mount Shasta, California: chemistry and recharge elevations. J Volcanol Geoth Res 121:137–153. doi:10.1016/S0377-0273(02)00426-2

    Article  Google Scholar 

  • Paris G, Gaillardet J, Louvat P (2010) Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology 38:1035–1038. doi:10.1130/G31321.1

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. geological survey techniques and methods, book 6, chap. A43, p 497. http://pubs.usgs.gov/tm/06/a43/

  • Peacock SM (1987) Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contrib Miner Petrol 95:55–70. doi:10.1007/BF00518030

    Article  Google Scholar 

  • Peacock SM, Hervig RL (1999) Boron isotopic composition of subduction-zone metamorphic rocks. Chem Geol 160:281–290. doi:10.1016/S0009-2541(99)00103-5

    Article  Google Scholar 

  • Peters EK (1993) D-18O enriched waters of the Coast Range Mountains, northern California: connate and ore-forming fluids. Geochim Cosmochim Acta 57:1093–1104. doi:10.1016/0016-7037(93)90043-V

    Article  Google Scholar 

  • Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophys Geosyst. doi:10.1029/2002GC000438

    Google Scholar 

  • Saccocia PJ, Seewald JS, Shanks WC (2009) Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450 °C, 50 MPa. Geochim Cosmochim Acta 73:6789–6804. doi:10.1016/j.gca.2009.07.036

    Article  Google Scholar 

  • Sadofsky SJ, Bebout GE (2004) Nitrogen geochemistry of subducting sediments: new results from the Izu–Bonin–Mariana margin and insights regarding global nitrogen subduction. Geochem Geophys Geosyst. doi:10.1029/2003GC000543

    Google Scholar 

  • Sánchez-Murillo R, Gazel E, Schwarzenbach EM, Crespo-Medina M, Schrenk MO, Boll J, Gill BC (2014) Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: an analog of a humid early Earth? Geochem Geophys Geosyst 15:1783–1800. doi:10.1002/2013GC005213

    Article  Google Scholar 

  • Sanjuan B, Millot R, Asmundsson R, Brach M, Giroud N (2014) Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments. Chem Geol 389:60–81. doi:10.1016/j.chemgeo.2014.09.011

    Article  Google Scholar 

  • Sano T, Miyoshi M, Ingle S, Banerjee NR, Ishimoto M, Fukuoka T (2008) Boron and chlorine contents of upper oceanic crust: basement samples from IODP Hole 1256D. Geochem Geophys Geosyst. doi:10.1029/2008GC002182

    Google Scholar 

  • Schoeller H (1962) Les Eaux Souterraines. Hydrologie dynamique et chimique, Recherche, Exploitation et Évaluation des Ressources, Paris

  • Sekine Y et al (2015) High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat Commun 6:8604. doi:10.1038/ncomms9604. http://www.nature.com/articles/ncomms9604#supplementary-information

  • Shanks III WC (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In: Valley JW, Cole D (eds) Stable isotope geochemistry—reviews in mineralogy and geochemistry 43, vol 1. Mineralogical Society of America, pp 469–525

  • Snoke AW, Barnes CG (2006) The development of tectonic concepts for the Klamath Mountains province, California and Oregon. In: Snoke AW, Barnes CG (eds) Geological studies in the Klamath Mountains province, California and Oregon: a volume in honor of William P. Irwin, vol Geological Society of America Special Papers 410. Geological Society of America, pp 1–29. doi:10.1130/2006.2410(01)

  • Souza KA, Deal PH, Mack HM, Turnbill CE (1974) Growth and reproduction of microorganisms under extremely alkaline conditions. Appl Microbiol 28:1066–1068

    Google Scholar 

  • Sturchio NC, Abrajano TA, Murowchick JB, Muehlenbachs K (1989) Serpentinization of the Acoje massif, Zambales ophiolite, Philippines: hydrogen and oxygen isotope geochemistry. Tectonophysics 168:101–107. doi:10.1016/0040-1951(89)90370-3

    Article  Google Scholar 

  • Tomascak PB, Magna T, Dohmen R (2016) Advances in lithium isotope geochemistry. Springer, Berlin

    Book  Google Scholar 

  • Vengosh A (2014) Salinization and saline environments. In: Sherwood Lollar B (ed) Treatise on geochemistry, 2nd edn, vol 11: environmental geochemistry. Elsevier, pp 325–378. doi:10.1016/B978-0-08-095975-7.00909-8

  • Verma SP, Santoyo E (1997) New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geoth Res 79:9–23. doi:10.1016/S0377-0273(97)00024-3

    Article  Google Scholar 

  • Vigier N, Decarreau A, Millot R, Carignan J, Petit S, France-Lanord C (2008) Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim Cosmochim Acta 72:780–792. doi:10.1016/j.gca.2007.11.011

    Article  Google Scholar 

  • Vils F, Tonarini S, Kalt A, Seitz HM (2009) Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth Planet Sci Lett 286:414–425. doi:10.1016/j.epsl.2009.07.005

    Article  Google Scholar 

  • Von Damm KL, Parker CM, Zierenberg RA, Lilley MD, Olson EJ, Clague DA, McClain JS (2005) The Escanaba Trough, Gorda Ridge hydrothermal system: temporal stability and subseafloor complexity. Geochim Cosmochim Acta 69:4971–4984. doi:10.1016/j.gca.2005.04.018

    Article  Google Scholar 

  • Walowski KJ, Wallace PJ, Hauri EH, Wada I, Clynne MA (2015) Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat Geosci 8:404–408. doi:10.1038/ngeo2417

    Article  Google Scholar 

  • Warren JM, Hauri EH (2014) Pyroxenes as tracers of mantle water variations. J Geophys Res Solid Earth 119:1851–1881. doi:10.1002/2013JB010328

    Article  Google Scholar 

  • White WM (2015) Isotope geochemistry. Wiley, New York

    Google Scholar 

  • White DE, Hem JD, Waring GA (1963) Chapter F. Chemical composition of subsurface waters. In: Fleischer M (ed) Data of geochemistry, 6th edn. U.S. Government Printing Office, Geological Survey Professional Paper 440-F, Washington

  • Wilson JC (2010) A new polymer model for estimating Gibbs free energy of formation (ΔGF) of 7, 10 and 14 Å phyllosilicates at 25 °C, 1 Bar. Paper presented at the clays in natural and engineered barriers for radioactive waste confinement—4th international meeting, Nantes (France)

  • Wolery TW, Jarek RL (2003) EQ3/6, version 8.0—software user’s manual. Civilian radioactive waste, management system, management and operating contractor, Sandia National Laboratories, Albuquerque, New Mexico

  • Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005) The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84:206–216. doi:10.1016/j.lithos.2005.02.003

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290. doi:10.1016/S0012-821X(03)00035-9

    Article  Google Scholar 

  • Zhu Y, Shi B, Fang C (2000) The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. Chem Geol 164:321–330. doi:10.1016/S0009-2541(99)00151-5

    Article  Google Scholar 

  • Wunder B, Deschamps F, Watenphul A, Guillot S, Meixner A, Romer RL, Wirth R (2010) The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation. Contrib Mineral Petrol 159:781–790. doi:10.1007/s00410-009-0454-x

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290. doi:10.1016/j.chemgeo.2006.12.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank: J. Blank who furnished the samples and M. Wieser for the B isotope analysis; G. Etiope and P. Tomascack for their comments on the earlier versions of the manuscript; C. Monnin and two anonymous reviewers for their helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziano Boschetti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boschetti, T., Toscani, L., Iacumin, P. et al. Oxygen, Hydrogen, Boron and Lithium Isotope Data of a Natural Spring Water with an Extreme Composition: A Fluid from the Dehydrating Slab?. Aquat Geochem 23, 299–313 (2017). https://doi.org/10.1007/s10498-017-9323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-017-9323-9

Keywords

Navigation