Apoptosis

pp 1–25 | Cite as

Dying to communicate: apoptotic functions of Eph/Ephrin proteins

Review
  • 62 Downloads

Abstract

The Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors constitute the largest family of receptor tyrosine kinases and interact with a group of ligands called Ephrins. An essential feature of the Eph receptors and Ephrin ligands is that both are membrane-bound and, upon cell–cell interaction, initiate a bidirectional signaling involving both the receptor (forward signaling) and the ligand (reverse signaling). They regulate a large set of pleiotropic functions in virtually every tissue and physiological system. In vitro as well as in vivo data support a role for Eph and Ephrin molecules in cellular processes such as proliferation, cell–cell attraction and repulsion, motility and sorting. An increasing amount of evidence supports a role for these molecules in apoptosis and, although this function in cell death has been barely examined, the available information warrants a global consideration, to identify unmet needs and potential research avenues. Here we propose a comprehensive analysis of the data available regarding the importance of Ephs and Ephrins in cell death mechanisms throughout a large array of physiological systems.

Keywords

Eph receptor Ephrin Cell–cell communication Intercellular communication Apoptosis 

References

  1. 1.
    Gale NW, Holland SJ, Valenzuela DM et al (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19PubMedCrossRefGoogle Scholar
  2. 2.
    Himanen JP, Chumley MJ, Lackmann M et al (2004) Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7:501–509PubMedCrossRefGoogle Scholar
  3. 3.
    Himanen JP (2012) Ectodomain structures of Eph receptors. Semin Cell Dev Biol 23:35–42PubMedCrossRefGoogle Scholar
  4. 4.
    Du J, Fu C, Sretavan DW (2007) Eph/ephrin signaling as a potential therapeutic target after central nervous system injury. Curr Pharm Des 13:2507–2518PubMedCrossRefGoogle Scholar
  5. 5.
    Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12:15–20PubMedCrossRefGoogle Scholar
  6. 6.
    Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345PubMedCrossRefGoogle Scholar
  7. 7.
    Frisen J, Holmberg J, Barbacid M (1999) Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J 18:5159–5165PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Holder N, Klein R (1999) Eph receptors and ephrins: effectors of morphogenesis. Development 126:2033–2044PubMedGoogle Scholar
  9. 9.
    O’Leary DD, Wilkinson DG (1999) Eph receptors and ephrins in neural development. Curr Opin Neurobiol 9:65–73PubMedCrossRefGoogle Scholar
  10. 10.
    Yancopoulos GD, Klagsbrun M, Folkman J (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93:661–664PubMedCrossRefGoogle Scholar
  11. 11.
    Flenniken AM, Gale NW, Yancopoulos GD, Wilkinson DG (1996) Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev Biol 179:382–401PubMedCrossRefGoogle Scholar
  12. 12.
    Friedman GC, O’Leary DD (1996) Eph receptor tyrosine kinases and their ligands in neural development. Curr Opin Neurobiol 6:127–133PubMedCrossRefGoogle Scholar
  13. 13.
    Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753PubMedCrossRefGoogle Scholar
  14. 14.
    Arvanitis D, Davy A (2008) Eph/ephrin signaling: networks. Genes Dev 22:416–429PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Merlos-Suarez A, Batlle E (2008) Eph-ephrin signalling in adult tissues and cancer. Curr Opin Cell Biol 20:194–200PubMedCrossRefGoogle Scholar
  16. 16.
    Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52PubMedCrossRefGoogle Scholar
  17. 17.
    Hruska M, Dalva MB (2012) Ephrin regulation of synapse formation, function and plasticity. Mol Cell Neurosci 50:35–44PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chen Y, Fu AK, Ip NY (2012) Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal 24:606–611PubMedCrossRefGoogle Scholar
  19. 19.
    Matsuo K (2010) Eph and ephrin interactions in bone. Adv Exp Med Biol 658:95–103PubMedCrossRefGoogle Scholar
  20. 20.
    Compagni A, Logan M, Klein R, Adams RH (2003) Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell 5:217–230PubMedCrossRefGoogle Scholar
  21. 21.
    Davy A, Aubin J, Soriano P (2004) Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 18:572–583PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Depaepe V, Suarez-Gonzalez N, Dufour A et al (2005) Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435:1244–1250PubMedCrossRefGoogle Scholar
  23. 23.
    Holmberg J, Armulik A, Senti KA et al (2005) Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 19:462–471PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Park E, Kim Y, Noh H, Lee H, Yoo S, Park S (2013) EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ 20:169–180PubMedCrossRefGoogle Scholar
  25. 25.
    Lee H, Park E, Kim Y, Park S (2013) EphrinA5-EphA7 complex induces apoptotic cell death via TNFR1. Mol Cells 35:450–455PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lee H, Park S, Kang YS, Park S (2015) EphA receptors form a complex with caspase-8 to induce apoptotic cell death. Mol Cells 38:349–355PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Furne C, Ricard J, Cabrera JR et al (2009) EphrinB3 is an anti-apoptotic ligand that inhibits the dependence receptor functions of EphA4 receptors during adult neurogenesis. Biochim Biophys Acta 1793:231–238PubMedCrossRefGoogle Scholar
  28. 28.
    Omoto S, Ueno M, Mochio S, Yamashita T (2011) Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury. Neurosci Res 69:187–195PubMedCrossRefGoogle Scholar
  29. 29.
    Theus MH, Ricard J, Bethea JR, Liebl DJ (2010) EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells 28:1231–1242PubMedPubMedCentralGoogle Scholar
  30. 30.
    Yue Y, Su J, Cerretti DP, Fox GM, Jing S, Zhou R (1999) Selective inhibition of spinal cord neurite outgrowth and cell survival by the Eph family ligand ephrin-A5. J Neurosci 19:10026–10035PubMedCrossRefGoogle Scholar
  31. 31.
    Ohta K, Nakamura M, Hirokawa K et al (1996) The receptor tyrosine kinase, Cek8, is transiently expressed on subtypes of motoneurons in the spinal cord during development. Mech Dev 54:59–69PubMedCrossRefGoogle Scholar
  32. 32.
    Williams SE, Mann F, Erskine L et al (2003) Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39:919–935PubMedCrossRefGoogle Scholar
  33. 33.
    Fu CT, Tran T, Sretavan D (2010) Axonal/glial upregulation of EphB/ephrin-B signaling in mouse experimental ocular hypertension. Invest Ophthalmol Vis Sci 51:991–1001PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Salvucci O, Tosato G (2012) Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 114:21–57PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wiegers GJ, Kaufmann M, Tischner D, Villunger A (2011) Shaping the T-cell repertoire: a matter of life and death. Immunol Cell Biol 89:33–39PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Ceca J, Alfaro D, Montero-Herradon S, Tobajas E, Munoz JJ, Zapata AG (2015) Eph/Ephrins-mediated thymocyte-thymic epithelial cell interactions control numerous processes of thymus biology. Front Immunol 6:333PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Luo H, Wan X, Wu Y, Wu J (2001) Cross-linking of EphB6 resulting in signal transduction and apoptosis in Jurkat cells. J Immunol 167:1362–1370PubMedCrossRefGoogle Scholar
  38. 38.
    Maddigan A, Truitt L, Arsenault R et al (2011) EphB receptors trigger Akt activation and suppress Fas receptor-induced apoptosis in malignant T lymphocytes. J Immunol 187:5983–5994PubMedCrossRefGoogle Scholar
  39. 39.
    Jones RG, Elford AR, Parsons MJ et al (2002) CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J Exp Med 196:335–348PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kawai H, Kobayashi M, Hiramoto-Yamaki N, Harada K, Negishi M, Katoh H (2013) Ephexin4-mediated promotion of cell migration and anoikis resistance is regulated by serine 897 phosphorylation of EphA2. FEBS Open Bio 3:78–82PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Stahl S, Kaminskyy VO, Efazat G et al (2013) Inhibition of Ephrin B3-mediated survival signaling contributes to increased cell death response of non-small cell lung carcinoma cells after combined treatment with ionizing radiation and PKC 412. Cell Death Dis 4:e454CrossRefGoogle Scholar
  42. 42.
    Xia G, Kumar SR, Masood R et al (2005) Up-regulation of EphB4 in mesothelioma and its biological significance. Clin Cancer Res 11:4305–4315PubMedCrossRefGoogle Scholar
  43. 43.
    Xu NJ, Henkemeyer M (2012) Ephrin reverse signaling in axon guidance and synaptogenesis. Semin Cell Dev Biol 23:58–64PubMedCrossRefGoogle Scholar
  44. 44.
    Sloniowski S, Ethell IM (2012) Looking forward to EphB signaling in synapses. Semin Cell Dev Biol 23:75–82PubMedCrossRefGoogle Scholar
  45. 45.
    Suetterlin P, Marler KM, Drescher U (2012) Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections. Semin Cell Dev Biol 23:1–6PubMedCrossRefGoogle Scholar
  46. 46.
    Murai KK, Pasquale EB (2011) Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 59:1567–1578PubMedCrossRefGoogle Scholar
  47. 47.
    North HA, Clifford MA, Donoghue MJ (2013) ‘Til Eph do us part’: intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation. Cereb Cortex 23:1765–1773PubMedCrossRefGoogle Scholar
  48. 48.
    Cramer KS, Miko IJ (2016) Eph-ephrin signaling in nervous system development. F1000 Res  https://doi.org/10.12688/f1000research.7417.1 CrossRefGoogle Scholar
  49. 49.
    Kim Y, Park E, Noh H, Park S (2013) Expression of EphA8-Fc in transgenic mouse embryos induces apoptosis of neural epithelial cells during brain development. Dev Neurobiol 73:702–712PubMedCrossRefGoogle Scholar
  50. 50.
    Ricard J, Salinas J, Garcia L, Liebl DJ (2006) EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci 31:713–722PubMedCrossRefGoogle Scholar
  51. 51.
    Katakowski M, Zhang Z, deCarvalho AC, Chopp M (2005) EphB2 induces proliferation and promotes a neuronal fate in adult subventricular neural precursor cells. Neurosci Lett 385:204–209PubMedCrossRefGoogle Scholar
  52. 52.
    Witcher KG, Eiferman DS, Godbout JP (2015) Priming the inflammatory pump of the CNS after traumatic brain injury. Trends Neurosci 38:609–620PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA (1997) Oxidative stress following traumatic brain injury in rats. Surg Neurol 47:575–581PubMedCrossRefGoogle Scholar
  54. 54.
    Goldshmit Y, McLenachan S, Turnley A (2006) Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Brain Res Rev 52:327–345PubMedCrossRefGoogle Scholar
  55. 55.
    Cruz-Orengo L, Figueroa JD, Velazquez I et al (2006) Blocking EphA4 upregulation after spinal cord injury results in enhanced chronic pain. Exp Neurol 202:421–433PubMedCrossRefGoogle Scholar
  56. 56.
    Figueroa JD, Benton RL, Velazquez I et al (2006) Inhibition of EphA7 up-regulation after spinal cord injury reduces apoptosis and promotes locomotor recovery. J Neurosci Res 84:1438–1451PubMedCrossRefGoogle Scholar
  57. 57.
    Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J, Whittemore SR (1999) Induction of Eph B3 after spinal cord injury. Exp Neurol 156:218–222PubMedCrossRefGoogle Scholar
  58. 58.
    Willson CA, Irizarry-Ramirez M, Gaskins HE et al (2002) Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transpl 11:229–239Google Scholar
  59. 59.
    Willson CA, Miranda JD, Foster RD, Onifer SM, Whittemore SR (2003) Transection of the adult rat spinal cord upregulates EphB3 receptor and ligand expression. Cell Transpl 12:279–290CrossRefGoogle Scholar
  60. 60.
    Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24:10064–10073PubMedCrossRefGoogle Scholar
  61. 61.
    Li J, Liu N, Wang Y, Wang R, Guo D, Zhang C (2012) Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons. Neurosci Lett 518:92–95PubMedCrossRefGoogle Scholar
  62. 62.
    Doeppner TR, Bretschneider E, Doehring M et al (2011) Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia. Acta Neuropathol 122:429–442PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kao TJ, Law C, Kania A (2012) Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 23:83–91PubMedCrossRefGoogle Scholar
  64. 64.
    Kao TJ, Kania A (2011) Ephrin-mediated cis-attenuation of Eph receptor signaling is essential for spinal motor axon guidance. Neuron 71:76–91PubMedCrossRefGoogle Scholar
  65. 65.
    Tsenkina Y, Ricard J, Runko E, Quiala-Acosta MM, Mier J, Liebl DJ (2015) EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis 6:e1922PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Thundyil J, Manzanero S, Pavlovski D et al (2013) Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS ONE 8:e53528PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Colon-Ramos DA (2009) Synapse formation in developing neural circuits. Curr Top Dev Biol 87:53–79PubMedCrossRefGoogle Scholar
  68. 68.
    Buchert M, Schneider S, Meskenaite V et al (1999) The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell-cell contact in the brain. J Cell Biol 144:361–371PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Dalva MB, Takasu MA, Lin MZ et al (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956PubMedCrossRefGoogle Scholar
  70. 70.
    Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15:1382–1402PubMedCrossRefGoogle Scholar
  71. 71.
    Takasu MA, Dalva MB, Zigmond RE, Greenberg ME (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295:491–495PubMedCrossRefGoogle Scholar
  72. 72.
    Grunwald IC, Korte M, Adelmann G et al (2004) Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci 7:33–40PubMedCrossRefGoogle Scholar
  73. 73.
    Calo L, Bruno V, Spinsanti P et al (2005) Interactions between ephrin-B and metabotropic glutamate 1 receptors in brain tissue and cultured neurons. J Neurosci 25:2245–2254PubMedCrossRefGoogle Scholar
  74. 74.
    Calo L, Cinque C, Patane M et al (2006) Interaction between ephrins/Eph receptors and excitatory amino acid receptors: possible relevance in the regulation of synaptic plasticity and in the pathophysiology of neuronal degeneration. J Neurochem 98:1–10PubMedCrossRefGoogle Scholar
  75. 75.
    Barthet G, Dunys J, Shao Z et al (2013) Presenilin mediates neuroprotective functions of ephrinB and brain-derived neurotrophic factor and regulates ligand-induced internalization and metabolism of EphB2 and TrkB receptors. Neurobiol Aging 34:499–510PubMedCrossRefGoogle Scholar
  76. 76.
    Cisse M, Halabisky B, Harris J et al (2011) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469:47–52PubMedCrossRefGoogle Scholar
  77. 77.
    Semerdjieva S, Abdul-Razak HH, Salim SS et al (2013) Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors. Mol Cell Biol 33:1442–1455PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Vargas LM, Leal N, Estrada LD et al (2014) EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by amyloid-beta oligomers. PLoS ONE 9:e92309PubMedCrossRefGoogle Scholar
  79. 79.
    Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2010) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res 183:59–77PubMedCrossRefGoogle Scholar
  80. 80.
    Yue Y, Widmer DA, Halladay AK et al (1999) Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2. J Neurosci 19:2090–2101PubMedCrossRefGoogle Scholar
  81. 81.
    Scicolone G, Ortalli AL, Carri NG (2009) Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 79:227–247PubMedCrossRefGoogle Scholar
  82. 82.
    Triplett JW, Feldheim DA (2012) Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 23:7–15PubMedCrossRefGoogle Scholar
  83. 83.
    Noh H, Lee H, Park E, Park S (2016) Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling. Development 143:461–472PubMedCrossRefGoogle Scholar
  84. 84.
    Erskine L, Herrera E (2007) The retinal ganglion cell axon’s journey: insights into molecular mechanisms of axon guidance. Dev Biol 308:1–14PubMedCrossRefGoogle Scholar
  85. 85.
    Harada T, Harada C, Parada LF (2007) Molecular regulation of visual system development: more than meets the eye. Genes Dev 21:367–378PubMedCrossRefGoogle Scholar
  86. 86.
    Birgbauer E, Cowan CA, Sretavan DW, Henkemeyer M (2000) Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development 127:1231–1241PubMedGoogle Scholar
  87. 87.
    Mann F, Ray S, Harris W, Holt C (2002) Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35:461–473PubMedCrossRefGoogle Scholar
  88. 88.
    Frisen J, Yates PA, McLaughlin T, Friedman GC, O’Leary DD, Barbacid M (1998) Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20:235–243PubMedCrossRefGoogle Scholar
  89. 89.
    Feldheim DA, Vanderhaeghen P, Hansen MJ et al (1998) Topographic guidance labels in a sensory projection to the forebrain. Neuron 21:1303–1313PubMedCrossRefGoogle Scholar
  90. 90.
    Nakagawa S, Brennan C, Johnson KG, Shewan D, Harris WA, Holt CE (2000) Ephrin-B regulates the Ipsilateral routing of retinal axons at the optic chiasm. Neuron 25:599–610PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hindges R, McLaughlin T, Genoud N, Henkemeyer M, O’Leary D (2002) EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35:475–487PubMedCrossRefGoogle Scholar
  92. 92.
    Noh H, Park S (2016) Over-expression of Ephrin-A5 in mice results in decreasing the size of progenitor pool through inducing apoptosis. Mol Cells 39:136–140PubMedCrossRefGoogle Scholar
  93. 93.
    Dong LD, Gao F, Wang XH et al (2015) GluA2 trafficking is involved in apoptosis of retinal ganglion cells induced by activation of EphB/EphrinB reverse signaling in a rat chronic ocular hypertension model. J Neurosci 35:5409–5421PubMedCrossRefGoogle Scholar
  94. 94.
    Liu B, Liao M, Mielke JG et al (2006) Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 26:5309–5319PubMedCrossRefGoogle Scholar
  95. 95.
    Xia Y, Nawy S, Carroll RC (2007) Activity-dependent synaptic plasticity in retinal ganglion cells. J Neurosci 27:12221–12229PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Xia Y, Carroll RC, Nawy S (2006) State-dependent AMPA receptor trafficking in the mammalian retina. J Neurosci 26:5028–5036PubMedCrossRefGoogle Scholar
  97. 97.
    Casimiro TM, Nawy S, Carroll RC (2013) Molecular mechanisms underlying activity-dependent AMPA receptor cycling in retinal ganglion cells. Mol Cell Neurosci 56:384–392PubMedCrossRefGoogle Scholar
  98. 98.
    Desmond JC, Raynaud S, Tung E, Hofmann WK, Haferlach T, Koeffler HP (2007) Discovery of epigenetically silenced genes in acute myeloid leukemias. Leukemia 21:1026–1034PubMedCrossRefGoogle Scholar
  99. 99.
    Schmidt JF, Agapova OA, Yang P, Kaufman PL, Hernandez MR (2007) Expression of ephrinB1 and its receptor in glaucomatous optic neuropathy. Br J Ophthalmol 91:1219–1224PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Fu CT, Sretavan D (2012) Involvement of EphB/Ephrin-B signaling in axonal survival in mouse experimental glaucoma. Invest Ophthalmol Vis Sci 53:76–84PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Du J, Tran T, Fu C, Sretavan DW (2007) Upregulation of EphB2 and ephrin-B2 at the optic nerve head of DBA/2J glaucomatous mice coincides with axon loss. Invest Ophthalmol Vis Sci 48:5567–5581PubMedCrossRefGoogle Scholar
  102. 102.
    Day BW, Stringer BW, Boyd AW (2014) Eph receptors as therapeutic targets in glioblastoma. Br J Cancer 111:1255–1261PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Li X, Wang L, Gu JW et al (2010) Up-regulation of EphA2 and down-regulation of EphrinA1 are associated with the aggressive phenotype and poor prognosis of malignant glioma. Tumour Biol 31:477–488PubMedCrossRefGoogle Scholar
  104. 104.
    Binda E, Visioli A, Giani F et al (2012) The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22:765–780PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ottone C, Krusche B, Whitby A et al (2014) Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Royet A, Broutier L, Coissieux MM et al (2017) Ephrin-B3 supports glioblastoma growth by inhibiting apoptosis induced by the dependence receptor EphA4. Oncotarget 8:23750–23759PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Melani M, Weinstein BM (2010) Common factors regulating patterning of the nervous and vascular systems. Annu Rev Cell Dev Biol 26:639–665PubMedCrossRefGoogle Scholar
  108. 108.
    Kuijper S, Turner CJ, Adams RH (2007) Regulation of angiogenesis by Eph-ephrin interactions. Trends Cardiovasc Med 17:145–151PubMedCrossRefGoogle Scholar
  109. 109.
    Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG (2003) Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci 116:2461–2470PubMedCrossRefGoogle Scholar
  110. 110.
    Zheng LC, Wang XQ, Lu K et al (2017) Ephrin-B2/Fc promotes proliferation and migration, and suppresses apoptosis in human umbilical vein endothelial cells. Oncotarget 8(25):41348PubMedPubMedCentralGoogle Scholar
  111. 111.
    Salvucci O, Ohnuki H, Maric D et al (2015) EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun 6:6576PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Davies MH, Stempel AJ, Hubert KE, Powers MR (2010) Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy. Dev Dyn 239:1695–1707PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Davies MH, Zamora DO, Smith JR, Powers MR (2009) Soluble ephrin-B2 mediates apoptosis in retinal neovascularization and in endothelial cells. Microvasc Res 77:382–386PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Masood R, Xia G, Smith DL et al (2005) Ephrin B2 expression in Kaposi sarcoma is induced by human herpesvirus type 8: phenotype switch from venous to arterial endothelium. Blood 105:1310–1318PubMedCrossRefGoogle Scholar
  115. 115.
    Scehnet JS, Ley EJ, Krasnoperov V et al (2009) The role of Ephs, Ephrins, and growth factors in Kaposi sarcoma and implications of EphrinB2 blockade. Blood 113:254–263PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Huang X, Yamada Y, Kidoya H et al (2007) EphB4 overexpression in B16 melanoma cells affects arterial-venous patterning in tumor angiogenesis. Cancer Res 67:9800–9808PubMedCrossRefGoogle Scholar
  117. 117.
    Noren NK, Lu M, Freeman AL, Koolpe M, Pasquale EB (2004) Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci USA 101:5583–5588PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Cheng N, Brantley DM, Liu H et al (2002) Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 1:2–11PubMedCrossRefGoogle Scholar
  119. 119.
    Brantley DM, Cheng N, Thompson EJ et al (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011–7026PubMedCrossRefGoogle Scholar
  120. 120.
    Martiny-Baron G, Korff T, Schaffner F et al (2004) Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 6:248–257PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Flores MA, Fortea P, Trinidad EM et al (2016) EphrinA4 plays a critical role in alpha4 and alphaL mediated survival of human CLL cells during extravasation. Oncotarget 7(30):48481PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Freywald A, Sharfe N, Miller CD, Rashotte C, Roifman CM (2006) EphA receptors inhibit anti-CD3-induced apoptosis in thymocytes. J Immunol 176:4066–4074PubMedCrossRefGoogle Scholar
  123. 123.
    Gurniak CB, Berg LJ (1996) A new member of the Eph family of receptors that lacks protein tyrosine kinase activity. Oncogene 13:777–786PubMedGoogle Scholar
  124. 124.
    Freywald A, Sharfe N, Rashotte C, Grunberger T, Roifman CM (2003) The EphB6 receptor inhibits JNK activation in T lymphocytes and modulates T cell receptor-mediated responses. J Biol Chem 278:10150–10156PubMedCrossRefGoogle Scholar
  125. 125.
    Munoz JJ, Alfaro D, Garcia-Ceca J, Alonso C, Jimenez E, Zapata A (2006) Thymic alterations in EphA4-deficient mice. J Immunol 177:804–813PubMedCrossRefGoogle Scholar
  126. 126.
    Arakaki R, Yamada A, Kudo Y, Hayashi Y, Ishimaru N (2014) Mechanism of activation-induced cell death of T cells and regulation of FasL expression. Crit Rev Immunol 34:301–314PubMedCrossRefGoogle Scholar
  127. 127.
    Holen HL, Shadidi M, Narvhus K, Kjosnes O, Tierens A, Aasheim HC (2008) Signaling through ephrin-A ligand leads to activation of Src-family kinases, Akt phosphorylation, and inhibition of antigen receptor-induced apoptosis. J Leukoc Biol 84:1183–1191PubMedCrossRefGoogle Scholar
  128. 128.
    Yu G, Mao J, Wu Y, Luo H, Wu J (2006) Ephrin-B1 is critical in T-cell development. J Biol Chem 281:10222–10229PubMedCrossRefGoogle Scholar
  129. 129.
    Alfaro D, Munoz JJ, Garcia-Ceca J, Cejalvo T, Jimenez E, Zapata A (2008) Alterations in the thymocyte phenotype of EphB-deficient mice largely affect the double negative cell compartment. Immunology 125:131–143PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Alfaro D, Munoz JJ, Garcia-Ceca J, Cejalvo T, Jimenez E, Zapata AG (2011) The Eph/ephrinB signal balance determines the pattern of T-cell maturation in the thymus. Immunol Cell Biol 89:844–852PubMedCrossRefGoogle Scholar
  131. 131.
    Garcia-Ceca J, Alfaro D, Montero-Herradon S, Zapata AG (2013) Eph/ephrinB signalling is involved in the survival of thymic epithelial cells. Immunol Cell Biol 91:130–138PubMedCrossRefGoogle Scholar
  132. 132.
    Alfaro D, Garcia-Ceca JJ, Cejalvo T et al (2007) EphrinB1-EphB signaling regulates thymocyte-epithelium interactions involved in functional T cell development. Eur J Immunol 37:2596–2605PubMedCrossRefGoogle Scholar
  133. 133.
    Wohlfahrt JG, Karagiannidis C, Kunzmann S et al (2004) Ephrin-A1 suppresses Th2 cell activation and provides a regulatory link to lung epithelial cells. J Immunol 172:843–850PubMedCrossRefGoogle Scholar
  134. 134.
    Coulthard MG, Morgan M, Woodruff TM et al (2012) Eph/Ephrin signaling in injury and inflammation. Am J Pathol 181:1493–1503PubMedCrossRefGoogle Scholar
  135. 135.
    Kuang SQ, Bai H, Fang ZH et al (2010) Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia. Blood 115:2412–2419PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kampen KR, Scherpen FJ, Garcia-Manero G et al (2015) EphB1 suppression in acute myelogenous leukemia: regulating the DNA damage control system. Mol Cancer Res 13:982–992PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142:1028–1042PubMedCrossRefGoogle Scholar
  138. 138.
    Nikolova Z, Djonov V, Zuercher G, Andres AC, Ziemiecki A (1998) Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J Cell Sci 111(Pt 18):2741–2751PubMedGoogle Scholar
  139. 139.
    Munarini N, Jager R, Abderhalden S et al (2002) Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J Cell Sci 115:25–37PubMedGoogle Scholar
  140. 140.
    Weiler S, Rohrbach V, Pulvirenti T, Adams R, Ziemiecki A, Andres AC (2009) Mammary epithelial-specific knockout of the ephrin-B2 gene leads to precocious epithelial cell death at lactation. Dev Growth Differ 51:809–819PubMedCrossRefGoogle Scholar
  141. 141.
    Vaught D, Chen J, Brantley-Sieders DM (2009) Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol Biol Cell 20:2572–2581PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Andres AC, Reid HH, Zurcher G, Blaschke RJ, Albrecht D, Ziemiecki A (1994) Expression of two novel eph-related receptor protein tyrosine kinases in mammary gland development and carcinogenesis. Oncogene 9:1461–1467PubMedGoogle Scholar
  143. 143.
    Berclaz G, Flutsch B, Altermatt HJ et al (2002) Loss of EphB4 receptor tyrosine kinase protein expression during carcinogenesis of the human breast. Oncol Rep 9:985–989PubMedGoogle Scholar
  144. 144.
    Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM (2004) Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 10:26–33PubMedCrossRefGoogle Scholar
  145. 145.
    Kumar SR, Singh J, Xia G et al (2006) Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am J Pathol 169:279–293PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Noren NK, Foos G, Hauser CA, Pasquale EB (2006) The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 8:815–825PubMedCrossRefGoogle Scholar
  147. 147.
    Kertesz N, Krasnoperov V, Reddy R et al (2006) The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood 107:2330–2338PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Haldimann M, Custer D, Munarini N et al (2009) Deregulated ephrin-B2 expression in the mammary gland interferes with the development of both the glandular epithelium and vasculature and promotes metastasis formation. Int J Oncol 35:525–536PubMedGoogle Scholar
  149. 149.
    Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson SA (2012) Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int J Cancer 131:E614-E624CrossRefGoogle Scholar
  150. 150.
    Noren NK, Pasquale EB (2007) Paradoxes of the EphB4 receptor in cancer. Cancer Res 67:3994–3997PubMedCrossRefGoogle Scholar
  151. 151.
    Kandouz M, Haidara K, Zhao J, Brisson ML, Batist G (2010) The EphB2 tumor suppressor induces autophagic cell death via concomitant activation of the ERK1/2 and PI3K pathways. Cell Cycle 9:398–407PubMedCrossRefGoogle Scholar
  152. 152.
    Chukkapalli S, Amessou M, Dilly AK et al (2014) Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res 320:233–246PubMedCrossRefGoogle Scholar
  153. 153.
    Harada K, Hiramoto-Yamaki N, Negishi M, Katoh H (2011) Ephexin4 and EphA2 mediate resistance to anoikis through RhoG and phosphatidylinositol 3-kinase. Exp Cell Res 317:1701–1713PubMedCrossRefGoogle Scholar
  154. 154.
    Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J (2005) A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24:7859–7868PubMedCrossRefGoogle Scholar
  155. 155.
    Hiramoto-Yamaki N, Takeuchi S, Ueda S et al (2010) Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol 190:461–477PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Akada M, Harada K, Negishi M, Katoh H (2014) EphB6 promotes anoikis by modulating EphA2 signaling. Cell Signal 26:2879–2884PubMedCrossRefGoogle Scholar
  157. 157.
    Hu M, Carles-Kinch KL, Zelinski DP, Kinch MS (2004) EphA2 induction of fibronectin creates a permissive microenvironment for malignant cells. Mol Cancer Res 2:533–540PubMedGoogle Scholar
  158. 158.
    Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Allan EH, Hausler KD, Wei T et al (2008) EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res 23:1170–1181PubMedCrossRefGoogle Scholar
  160. 160.
    Takyar FM, Tonna S, Ho PW et al (2013) EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. J Bone Miner Res 28:912–925PubMedCrossRefGoogle Scholar
  161. 161.
    Martin TJ, Allan EH, Ho PW et al (2010) Communication between ephrinB2 and EphB4 within the osteoblast lineage. Adv Exp Med Biol 658:51–60PubMedCrossRefGoogle Scholar
  162. 162.
    Zhao C, Irie N, Takada Y et al (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121PubMedCrossRefGoogle Scholar
  163. 163.
    Mundy GR, Elefteriou F (2006) Boning up on ephrin signaling. Cell 126:441–443PubMedCrossRefGoogle Scholar
  164. 164.
    Stiffel V, Amoui M, Sheng MH, Mohan S, Lau KH (2014) EphA4 receptor is a novel negative regulator of osteoclast activity. J Bone Miner Res 29:804–819PubMedCrossRefGoogle Scholar
  165. 165.
    Xing W, Kim J, Wergedal J, Chen ST, Mohan S (2010) Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1. Mol Cell Biol 30:711–721PubMedCrossRefGoogle Scholar
  166. 166.
    Tonna S, Takyar FM, Vrahnas C et al (2014) EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB J 28:4482–4496PubMedCrossRefGoogle Scholar
  167. 167.
    Rackley CR, Stripp BR (2012) Building and maintaining the epithelium of the lung. J Clin Invest 122:2724–2730PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Wilkinson GA, Schittny JC, Reinhardt DP, Klein R (2008) Role for ephrinB2 in postnatal lung alveolar development and elastic matrix integrity. Dev Dyn 237:2220–2234PubMedCrossRefGoogle Scholar
  169. 169.
    Bennett KM, Afanador MD, Lal CV et al (2013) Ephrin-B2 reverse signaling increases alpha5beta1 integrin-mediated fibronectin deposition and reduces distal lung compliance. Am J Respir Cell Mol Biol 49:680–687PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Vadivel A, van Haaften T, Alphonse RS et al (2012) Critical role of the axonal guidance cue EphrinB2 in lung growth, angiogenesis, and repair. Am J Respir Crit Care Med 185:564–574PubMedCrossRefGoogle Scholar
  171. 171.
    Zhuang G, Song W, Amato K et al (2012) Effects of cancer-associated EPHA3 mutations on lung cancer. J Natl Cancer Inst 104:1182–1197PubMedCrossRefGoogle Scholar
  172. 172.
    Yeddula N, Xia Y, Ke E, Beumer J, Verma IM (2015) Screening for tumor suppressors: loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci USA 112:E6476–E6485CrossRefGoogle Scholar
  173. 173.
    Dohn M, Jiang J, Chen X (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20:6503–6515PubMedCrossRefGoogle Scholar
  174. 174.
    Jin YJ, Wang J, Qiao C, Hei TK, Brandt-Rauf PW, Yin Y (2006) A novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis. Mol Cancer Res 4:769–778PubMedCrossRefGoogle Scholar
  175. 175.
    Zhao R, Gish K, Murphy M et al (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14:981–993PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Amato KR, Wang S, Hastings AK et al (2014) Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Invest 124:2037–2049PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Ji XD, Li G, Feng YX et al (2011) EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration. Cancer Res 71:1156–1166PubMedCrossRefGoogle Scholar
  178. 178.
    Wijeratne DT, Rodger J, Wood FM, Fear MW (2015) The role of Eph receptors and Ephrins in the skin. Int J Dermatol 55(1):3–10Google Scholar
  179. 179.
    Guo H, Miao H, Gerber L et al (2006) Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 66:7050–7058PubMedCrossRefGoogle Scholar
  180. 180.
    Yang G, Zhang G, Pittelkow MR, Ramoni M, Tsao H (2006) Expression profiling of UVB response in melanocytes identifies a set of p53-target genes. J Invest Dermatol 126:2490–2506PubMedCrossRefGoogle Scholar
  181. 181.
    Zhang G, Njauw CN, Park JM, Naruse C, Asano M, Tsao H (2008) EphA2 is an essential mediator of UV radiation-induced apoptosis. Cancer Res 68:1691–1696PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Udayakumar D, Zhang G, Ji Z, Njauw CN, Mroz P, Tsao H (2011) EphA2 is a critical oncogene in melanoma. Oncogene 30:4921–4929PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Lawrenson ID, Wimmer-Kleikamp SH, Lock P et al (2002) Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci 115:1059–1072PubMedGoogle Scholar
  184. 184.
    Batlle E, Henderson JT, Beghtel H et al (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263PubMedCrossRefGoogle Scholar
  185. 185.
    Holmberg J, Genander M, Halford MM et al (2006) EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 125:1151–1163PubMedCrossRefGoogle Scholar
  186. 186.
    Genander M, Halford MM, Xu NJ et al (2009) Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell 139:679–692PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Cortina C, Palomo-Ponce S, Iglesias M et al (2007) EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet 39:1376–1383PubMedCrossRefGoogle Scholar
  188. 188.
    Batlle E, Bacani J, Begthel H et al (2005) EphB receptor activity suppresses colorectal cancer progression. Nature 435:1126–1130PubMedCrossRefGoogle Scholar
  189. 189.
    Chiu ST, Chang KJ, Ting CH, Shen HC, Li H, Hsieh FJ (2009) Over-expression of EphB3 enhances cell-cell contacts and suppresses tumor growth in HT-29 human colon cancer cells. Carcinogenesis 30:1475–1486PubMedCrossRefGoogle Scholar
  190. 190.
    Kumar SR, Scehnet JS, Ley EJ et al (2009) Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res 69:3736–3745PubMedCrossRefGoogle Scholar
  191. 191.
    Bogan C, Chen J, O’Sullivan MG, Cormier RT (2009) Loss of EphA2 receptor tyrosine kinase reduces ApcMin/+ tumorigenesis. Int J Cancer 124:1366–1371PubMedCrossRefGoogle Scholar
  192. 192.
    Wang TH, Chang JL, Ho JY, Wu HC, Chen TC (2012) EphrinA5 suppresses colon cancer development by negatively regulating epidermal growth factor receptor stability. FEBS J 279:251–263PubMedCrossRefGoogle Scholar
  193. 193.
    Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C, Boyd AW (2012) Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer 48:753–762PubMedCrossRefGoogle Scholar
  194. 194.
    Xia G, Kumar SR, Masood R et al (2005) EphB4 expression and biological significance in prostate cancer. Cancer Res 65:4623–4632PubMedCrossRefGoogle Scholar
  195. 195.
    Xia G, Kumar SR, Stein JP et al (2006) EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival. Oncogene 25:769–780PubMedCrossRefGoogle Scholar
  196. 196.
    Masood R, Kumar SR, Sinha UK et al (2006) EphB4 provides survival advantage to squamous cell carcinoma of the head and neck. Int J Cancer 119:1236–1248PubMedCrossRefGoogle Scholar
  197. 197.
    Kumar SR, Masood R, Spannuth WA et al (2007) The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome. Br J Cancer 96:1083–1091PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Aslam MI, Abraham J, Mansoor A, Druker BJ, Tyner JW, Keller C (2014) PDGFRbeta reverses EphB4 signaling in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 111:6383–6388PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Taddei ML, Parri M, Angelucci A et al (2011) EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res 9:149–160PubMedCrossRefGoogle Scholar
  200. 200.
    Mohammed KA, Wang X, Goldberg EP, Antony VB, Nasreen N (2011) Silencing receptor EphA2 induces apoptosis and attenuates tumor growth in malignant mesothelioma. Am J Cancer Res 1:419–431PubMedPubMedCentralGoogle Scholar
  201. 201.
    Feng YX, Zhao JS, Li JJ et al (2010) Liver cancer: EphrinA2 promotes tumorigenicity through Rac1/Akt/NF-kappaB signaling pathway. Hepatology 51:535–544PubMedCrossRefGoogle Scholar
  202. 202.
    Duffy SL, Coulthard MG, Spanevello MD et al (2008) Generation and characterization of EphA1 receptor tyrosine kinase reporter knockout mice. Genesis 46:553–561PubMedCrossRefGoogle Scholar
  203. 203.
    Gibert B, Mehlen P (2015) Dependence receptors and cancer: addiction to trophic ligands. Cancer Res 75:5171–5175PubMedCrossRefGoogle Scholar
  204. 204.
    Noberini R, Pasquale EB (2009) Proliferation and tumor suppression: not mutually exclusive for Eph receptors. Cancer Cell 16:452–454PubMedCrossRefGoogle Scholar
  205. 205.
    Nelersa CM, Barreras H, Runko E et al (2012) High-content analysis of proapoptotic EphA4 dependence receptor functions using small-molecule libraries. J Biomol Screen 17:785–795PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Dries JL, Kent SD, Virag JA (2011) Intramyocardial administration of chimeric ephrinA1-Fc promotes tissue salvage following myocardial infarction in mice. J Physiol 589:1725–1740PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA (2008) Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem 283:21540–21549PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Zhaorigetu S, Wan G, Kaini R, Jiang Z, Hu CA (2008) ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death. Autophagy 4:1079–1082PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41PubMedCrossRefGoogle Scholar
  211. 211.
    Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344PubMedCrossRefGoogle Scholar
  213. 213.
    Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Mathew R, White E (2011) Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 21:113–119PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Galluzzi L, Pietrocola F, Bravo-San Pedro JM et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Jiang X, Overholtzer M, Thompson CB (2015) Autophagy in cellular metabolism and cancer. J Clin Invest 125:47–54PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Liu J, Debnath J (2016) The evolving, multifaceted roles of autophagy in cancer. Adv Cancer Res 130:1–53PubMedCrossRefGoogle Scholar
  220. 220.
    White E, Mehnert JM, Chan CS (2015) Autophagy, metabolism, and cancer. Clin Cancer Res 21:5037–5046PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kenific CM, Debnath J (2014) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25:37–45Google Scholar
  222. 222.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Amaravadi RK, Lippincott-Schwartz J, Yin XM et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Sato K, Tsuchihara K, Fujii S et al (2007) Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 67:9677–9684PubMedCrossRefGoogle Scholar
  226. 226.
    White E (2008) Autophagic cell death unraveled: pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy 4:399–401PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H (2009) Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol 16:761–771PubMedCrossRefGoogle Scholar
  228. 228.
    Cheng N, Brantley D, Fang WB et al (2003) Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors. Neoplasia 5:445–456PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Tandon M, Vemula SV, Sharma A et al (2012) EphrinA1-EphA2 interaction-mediated apoptosis and FMS-like tyrosine kinase 3 receptor ligand-induced immunotherapy inhibit tumor growth in a breast cancer mouse model. J Gene Med 14:77–89PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Wykosky J, Gibo DM, Debinski W (2007) A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor expressing tumor cells. Mol Cancer Ther 6:3208–3218PubMedCrossRefGoogle Scholar
  231. 231.
    Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB (2001) Crystal structure of an Eph receptor-ephrin complex. Nature 414:933–938PubMedCrossRefGoogle Scholar
  232. 232.
    Toth J, Cutforth T, Gelinas AD, Bethoney KA, Bard J, Harrison CJ (2001) Crystal structure of an ephrin ectodomain. DevCell 1:83–92Google Scholar
  233. 233.
    Chaudhari A, Mahfouz M, Fialho AM et al (2007) Cupredoxin-cancer interrelationship: azurin binding with EphB2, interference in EphB2 tyrosine phosphorylation, and inhibition of cancer growth. Biochemistry 46:1799–1810PubMedCrossRefGoogle Scholar
  234. 234.
    Bhatia S, Hirsch K, Sharma J et al (2016) Enhancing radiosensitization in EphB4 receptor-expressing head and neck squamous cell carcinomas. SciRep 6:38792Google Scholar
  235. 235.
    Nasreen N, Mohammed KA, Antony VB (2006) Silencing the receptor EphA2 suppresses the growth and haptotaxis of malignant mesothelioma cells. Cancer 107:2425–2435PubMedCrossRefGoogle Scholar
  236. 236.
    Takano H, Nakamura T, Tsuchikawa T et al (2015) Inhibition of Eph receptor A4 by 2,5-dimethylpyrrolyl benzoic acid suppresses human pancreatic cancer growing orthotopically in nude mice. Oncotarget 6:41063–41076PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Miao B, Ji Z, Tan L et al (2015) EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov 5:274–287PubMedCrossRefGoogle Scholar
  238. 238.
    Giorgio C, Mohammed IH, Flammini L et al (2011) Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS ONE 6:e18128PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Jehle J, Staudacher I, Wiedmann F et al (2012) Regulation of apoptosis in HL-1 cardiomyocytes by phosphorylation of the receptor tyrosine kinase EphA2 and protection by lithocholic acid. Br J Pharmacol 167:1563–1572PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Giorgio C, Incerti M, Corrado M et al (2018) Pharmacological evaluation of new bioavailable small molecules targeting Eph/ephrin interaction. Biochem Pharmacol 147:21–29PubMedCrossRefGoogle Scholar
  241. 241.
    Goldgur Y, Susi P, Karelehto E et al (2014) Generation and characterization of a single-chain anti-EphA2 antibody. Growth Factors 32:214–222PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Lee JW, Stone RL, Lee SJ et al (2010) EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clin Cancer Res 16:2562–2570PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Vail ME, Murone C, Tan A et al (2014) Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res 74:4470–4481PubMedCrossRefGoogle Scholar
  244. 244.
    Spannuth WA, Mangala LS, Stone RL et al (2010) Converging evidence for efficacy from parallel EphB4-targeted approaches in ovarian carcinoma. Mol Cancer Ther 9:2377–2388PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Stephenson SA, Douglas EL, Mertens-Walker I, Lisle JE, Maharaj MS, Herington AC (2015) Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4. Oncotarget 6:7554–7569PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyWayne State University School of MedicineDetroitUSA
  2. 2.Karmanos Cancer InstituteWayne State UniversityDetroitUSA

Personalised recommendations