Apoptosis

pp 1–9 | Cite as

Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques

Original Paper
  • 4 Downloads

Abstract

This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.

Keywords

Apoptosis Stain-free Machine learning Classification Diffraction image 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10495_2018_1454_MOESM1_ESM.pdf (273 kb)
Supplementary material 1 (PDF 273 KB)
10495_2018_1454_MOESM2_ESM.pdf (315 kb)
Supplementary material 2 (PDF 314 KB)
10495_2018_1454_MOESM3_ESM.pdf (118 kb)
Supplementary material 3 (PDF 117 KB)
10495_2018_1454_MOESM4_ESM.pdf (55 kb)
Supplementary material 4 (PDF 55 KB)

References

  1. 1.
    Kleinberger T (2004) Induction of transformed cell-specific apoptosis by the adenovirus E4orf4 protein. Prog Mol Subcell Biol 36:245–267CrossRefPubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefPubMedGoogle Scholar
  3. 3.
    Low KC, Tergaonkar V (2013) Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 38(9):426–434CrossRefPubMedGoogle Scholar
  4. 4.
    Islam M, Brink H, Blanche S, DiPrete C, Bongiorno T, Stone N, Liu A, Philip A, Wang G, Lam W, Alexeev A, Waller EK, Sulchek T (2017) Microfluidic sorting of cells by viability based on differences in cell stiffness. Sci Rep 7(1):1997.  https://doi.org/10.1038/s41598-017-01807-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nadalini M, Tarozzi N, Di Santo M, Borini A (2014) Annexin V magnetic-activated cell sorting versus swim-up for the selection of human sperm in ART: is the new approach better then the traditional one? J Assist Reprod Genet 31(8):1045–1051.  https://doi.org/10.1007/s10815-014-0267-3 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wlodkowic D, Skommer J, Darzynkiewicz Z (2009) Flow cytometry-based apoptosis detection. Methods Mol Biol 559:19–32.  https://doi.org/10.1007/978-1-60327-017-5_2 CrossRefPubMedGoogle Scholar
  7. 7.
    Abbady AQ, Twair A, Ali B, Murad H (2017) Characterization of Annexin V fusion with the superfolder GFP in liposomes binding and apoptosis detection. Front Physiol 8:317.  https://doi.org/10.3389/fphys.2017.00317 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Head T, Dau P, Duffort S, Daftarian P, Joshi PM, Vazquez-Padron R, Deo SK, Daunert S (2017) An enhanced bioluminescence-based Annexin V probe for apoptosis detection in vitro and in vivo. Cell Death Dis 8(5):e2826.  https://doi.org/10.1038/cddis.2017.141 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kurschus FC, Pal PP, Baumler P, Jenne DE, Wiltschi B, Budisa N (2009) Gold fluorescent annexin A5 as a novel apoptosis detection tool. Cytom Part A: J Int Soc Anal Cytol 75(7):626–633.  https://doi.org/10.1002/cyto.a.20737 CrossRefGoogle Scholar
  10. 10.
    Huh S, Kanade T (2013) Apoptosis detection for non-adherent cells in time-lapse phase contrast microscopy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 16(Pt 2):59–66Google Scholar
  11. 11.
    Huh S, Ker DF, Su H, Kanade T (2012) Apoptosis detection for adherent cell populations in time-lapse phase-contrast microscopy images. In:International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 15(Pt 1):331–339Google Scholar
  12. 12.
    Chan LL, Gosangari SL, Watkin KL, Cunningham BT (2007) A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation. Apoptosis 12(6):1061–1068.  https://doi.org/10.1007/s10495-006-0031-y CrossRefPubMedGoogle Scholar
  13. 13.
    Feng Y, Zhang N, Jacobs KM, Jiang W, Yang LV, Li Z, Zhang J, Lu JQ, Hu XH (2014) Polarization imaging and classification of Jurkat T and Ramos B cells using a flow cytometer. Cytom Part A: J Int Soc Anal Cytol 85(9):817–826.  https://doi.org/10.1002/cyto.a.22504 CrossRefGoogle Scholar
  14. 14.
    Mukhopadhyay P, Rajesh M, Hasko G, Hawkins BJ, Madesh M, Pacher P (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2(9):2295–2301.  https://doi.org/10.1038/nprot.2007.327 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31(1):1–9CrossRefPubMedGoogle Scholar
  16. 16.
    Wilkins RC, Kutzner BC, Truong M, Sanchez-Dardon J, McLean JR (2002) Analysis of radiation-induced apoptosis in human lymphocytes: flow cytometry using Annexin V and propidium iodide versus the neutral comet assay. Cytometry 48(1):14–19.  https://doi.org/10.1002/cyto.10098 CrossRefPubMedGoogle Scholar
  17. 17.
    Peng L, Jiang H, Bradley C (2001) Annexin V for flow cytometric detection of phosphatidylserine expression on lymphoma cells undergoing apoptosis. Hua xi yi ke da xue xue bao = J West China Univ Med Sci = Huaxi yike daxue xuebao 32(4):602–620Google Scholar
  18. 18.
    Basu S, Campbell HM, Dittel BN, Ray A (2010) Purification of specific cell population by fluorescence activated cell sorting (FACS). JoVE.  https://doi.org/10.3791/1546 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sa Y, Feng Y, Jacobs KM, Yang J, Pan R, Gkigkitzis I, Lu JQ, Hu XH (2013) Study of low speed flow cytometry for diffraction imaging with different chamber and nozzle designs. Cytom Part A: J Int Soc Anal Cytol 83(11):1027–1033.  https://doi.org/10.1002/cyto.a.22332 CrossRefGoogle Scholar
  20. 20.
    Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621CrossRefGoogle Scholar
  21. 21.
    Yang X, Feng Y, Liu Y, Zhang N, Lin W, Sa Y, Hu XH (2014) A quantitative method for measurement of HL-60 cell apoptosis based on diffraction imaging flow cytometry technique. Biomed Opt Express 5(7):2172–2183.  https://doi.org/10.1364/BOE.5.002172 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dunn AK, Smithpeter CL, Welch AJ, Richards-Kortum RR (1997) Finite-difference time-domain simulation of light scattering from single cells. J Biomed Opt 2(3):262–266.  https://doi.org/10.1117/12.275219 CrossRefPubMedGoogle Scholar
  23. 23.
    Mourant JR, Canpolat M, Brocker C, Esponda-Ramos O, Johnson TM, Matanock A, Stetter K, Freyer JP (2000) Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. J Biomed Opt 5(2):131–137.  https://doi.org/10.1117/1.429979 CrossRefPubMedGoogle Scholar
  24. 24.
    Lu JQ, Yang P, Hu XH (2005) Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method. J Biomed Opt.  https://doi.org/10.1171/1.1897397 Google Scholar
  25. 25.
    Brock RS, Hu X-H, Weidner DA, Mourant JR, Lu JQ (2006) Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images. J Quant Spectrosc Radiat Transf 102(1):25–36CrossRefGoogle Scholar
  26. 26.
    Arends MJ, Wyllie AH (1991) Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 32:223–254CrossRefPubMedGoogle Scholar
  27. 27.
    Fesus L, Davies PJ, Piacentini M (1991) Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol 56(2):170–177PubMedGoogle Scholar
  28. 28.
    Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45(3):528–537CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang G, Gurtu V, Kain SR, Yan G (1997) Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23(3):525–531PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTianjin UniversityTianjinChina
  2. 2.Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalTianjinChina

Personalised recommendations