Skip to main content
Log in

Unsteady Behavior of a Backward-facing Step in Forced Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The unsteady behaviour of a turbulent flow (Reh = 30450) over a backward-facing step was investigated under sinusoidal actuation. Non-time-resolved Piv and time-resolved pressure measurements were done simultaneously to analyse the dynamical aspects. Initial measurements were made varying the periodic forcing (Strouhal number) based on the step height, \(St_{a}\), from 0.045 to 0.453. Results suggest that an excitation at \(St_{a}= 0.226\), associated to the shedding frequency, leads to a decrease of the external reattachment length \(L_{r}\) and an increase of the internal separation length \(X_{r}\). A further study of both, the natural and optimal frequency (among the tested) cases is done using modal decomposition techniques; this method separates the dominant spectral contributions. The spectral decomposition showed an increasing peak related to the shedding phenomena. Comparative results highlighted the dynamical flow mechanism involved in forced flow and underlined that the energetic flow structure interactions is due to a periodic actuation close to the natural shedding frequency. This dynamical behaviour is finally confirmed with a phase averaging of the stochastic flow reconstruction showing convective structures induced by periodic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A r :

Recirculation area [m2]

Ar :

Aspect ratio of the backward-facing step

Cp :

Mean pressure coefficient

Cp r m s :

Rms Pressure coefficient

C μ :

Momentum coefficient

δ 99 % :

Incoming boundary layer thickness [m]

Er :

Expansion ratio of the flow configuration

f a :

Actuation frequency [Hz]

Φn :

nth Spatial Pod eigenfunction [m]

a n :

nthPod temporal coefficient [s]

λ n :

nthPod eigenvalue

E(f):

Psd of the wall pressure fluctuation

h :

Step height [m]

L r :

External reattachment length [m]

Re δ :

Reynolds number based on \(\delta \)

Re θ :

Reynolds number based on \(\theta \)

Re h :

Reynolds number based on h

S j e t :

Cross-section of the micro-jets [m2]

S r e f :

Reference surface of the Bfs [m2]

St a :

Actuation Strouhal number based on h

St θ :

Actuation Strouhal number based on \(\theta \)

St :

Strouhal number based on \(L_{r}\)

θ :

Momentum thickness [m]

U 0 :

Free-stream velocity [m/s]

u j e t :

Jet velocity [m/s]

V j e t :

Jet velocity amplitude [m/s]

X r :

Internal separation length [m]

x, y, z :

Spatial coordinates [m]

w z :

Spanwise fluctuation vorticity [s− 1]

V e :

Actuation power supply [Volts]

V R :

Velocity ratio

A ij, \(B_{ijk}\) :

Stochastic estimation coefficients

References

  1. Roos, F.W., Kegelman, J.T.: Control of coherent structures in reattaching laminar and turbulent shear layers. AIAA J. 24, 1956–1963 (1986)

    Article  Google Scholar 

  2. Barros, D., Borée, J., Noack, B.R., Spohn, A., Ruiz, T.: Bluff body drag manipulation using pulsed jets and Coanda effect. J. Fluid Mech. 805, 422–459 (2016)

    Article  MathSciNet  Google Scholar 

  3. Englar, R.J.: Advanced aerodynamic devices to improve the performance, economics, handling and safety of heavy vehicles. Tech. Rep. SAE Tech Paper 2001-01-2072 (2001)

  4. Schmidt, H.J., Woszidlo, R., Nayeri, C.N., Paschereit, C.O.: Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators. Exp. Fluids 56(7), 1–16 (2015)

    Article  Google Scholar 

  5. Cattafesta, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011)

    Article  MATH  Google Scholar 

  6. Garrido, P.: Active Control of the Turbulent Flow Downstream of a Backward Facing Step with Dielectric Barrier Discharge Plasma Actuators. Thèse Mécanique Des Fluides. Université de Poitiers, Poitiers (2014)

    Google Scholar 

  7. Aubrun, S., McNally, J., Alvi, F., Kourta, A.: Separation flow control on a generic ground vehicle using steady microjet arrays. Exp. Fluids 51(5), 1177–1187 (2011)

    Article  Google Scholar 

  8. Rouméas, M., Gilliéron, P., Kourta, A.: Drag reduction by flow separation control on a car after body. Int. J. Num. Meth. Fluids 60(11), 1222–1240 (2009)

    Article  MATH  Google Scholar 

  9. Yoshioka, S., Obi, S., Masuda, S.: Turbulence statistics of periodically perturbed separated flow over a backward-facing step. Int. J. Heat Fluid Flow 22, 393–401 (2001)

    Article  Google Scholar 

  10. Dejoan, A., Leschziner, M.A.: Large eddy simulation of periodically perturbed separated flow over a backward-facing step. Int. J. Heat Fluid Flow 25, 581–592 (2004)

    Article  Google Scholar 

  11. Glezer, A., Amitay, M., Honohan, A.M.: Aspects of low-and high-frequency actuation for aerodynamic flow control. AIAA J. 43(7), 1501–1511 (2005)

    Article  Google Scholar 

  12. Joseph, P., Amandolese, X., Edouard, C., Aider, J.-L.: Flow control using MEMS pulsed micro-jets on the Ahmed body. Exp. Fluids 54(1), 1–12 (2013)

    Article  Google Scholar 

  13. Park, H., Cho, J.-H., Lee, J., Lee, D.-H., Kim, K.-H.: Aerodynamic drag reduction of Ahmed model using synthetic jet array. SAE Int. J. Passeng. Cars - Mech. Syst. 6(1), 1–6 (2013)

    Article  Google Scholar 

  14. Yoshioka, S., Obi, S., Masuda, S.: Organized vortex motion in periodically perturbed turbulent separated flow over a backward-facing step. Int. J. Heat Fluid Flow 22, 301–307 (2001)

    Article  Google Scholar 

  15. Nishri, B., Wygnanski, I.: Effects of periodic excitation on turbulent flow separation from a flap. AIAA J. 36, 547–556 (1998)

    Article  Google Scholar 

  16. Seifert, A., Pack, L.G.: Oscillatory control of separation at high Reynolds numbers. AIAA J. 37, 1062–1071 (1999)

    Article  Google Scholar 

  17. Berk, T., Medjnoun, T., Ganapathisubramani, B.: Entrainment effects in periodic forcing of the flow over a backward-facing step. Phys. Rev. Fluids 2, 074605 (2017)

    Article  Google Scholar 

  18. Chun, K.B., Sung, H.J.: Control of turbulent separated flow over a backward-facing step. Exp. Fluids 21, 417–426 (1996)

    Article  Google Scholar 

  19. Dandois, J., Garnier, E., Sagaut, P.: Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 25 (2007)

    Article  MATH  Google Scholar 

  20. Bhattacharjee, S., Scheelke, B., Troutt, T.R.: Modification of vortex interactions in a reattaching separated flow. AIAA J. 24, 623–629 (1986)

    Article  Google Scholar 

  21. Hasan, M.A.Z.: The flow over a backward-facing step under controlled perturbation : laminar separation. J. Fluid Mech. 238, 73–96 (1992)

    Article  Google Scholar 

  22. Chun, K.B., Sung, H.J.: Visualization of a locally-forced separated flow over a backward-facing step. Exp. Fluids 25, 133–142 (1998)

    Article  Google Scholar 

  23. Wengle, H., Huppertz, A., Bärwolff, G., Janke, G.: The manipulated transitional backward-facing step flow: an experimental and direct numerical simulation investigation. Eur. J. Mech. B. Fluids 20, 25–46 (2001)

    Article  MATH  Google Scholar 

  24. Hung, L., Parviz, M., John, K.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)

    Article  MATH  Google Scholar 

  25. Simpson, R.L.: Aspects of turbulent boundary-layer separation. Prog. Aerosp. Sci. 32, 457–521 (1996)

    Article  Google Scholar 

  26. De Brederode, V., Bradshaw, P.: Influence of the side walls on the turbulent centerplane boundary-layer in a squareduct. Trans. ASME I: J. Fluids Eng. 100, 91–96 (1978)

    Google Scholar 

  27. Ma, X., Geisler, R., Schröder, A.: Experimental investigation of separated shear flow under subharmonic perturbations over a Backward-Facing step. Flow Turbul. Combust. 99, 71 (2017)

    Article  Google Scholar 

  28. Chovet, C., Lippert, M., Keirsbulck, L., Foucaut, J.-M.: Dynamic characterization of piezoelectric microblowers for separation flow control. Sensors and actuators: A Physical 249, 122–130 (2016)

    Article  Google Scholar 

  29. Gautier, N., Aider, J.-L., Duriez, T., Noack, B.R., Segond, M., Abel, M.: Closed-loop separation control using machine learning. J. Fluid Mech. 770, 442–457 (2015)

    Article  Google Scholar 

  30. Mahesh, K.: The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379–407 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lumley, J.L.: The structure of inhomogeneous turbulent flows. Atmospheric Turbul. and Radio Wave Propagation (A.M. Yaglom and V.I. takarski, eds.), Moscow: Nauka 25, 166–178 (1967)

    Google Scholar 

  32. Chovet, C., Lippert, M., Keirsbulck, L., Foucaut, J.-M.: Dynamical aspects of a backward-facing step flow at large Reynolds numbers. Exp. Fluids 58(11), 162 (2017)

    Article  Google Scholar 

  33. Adrian, R.J., Moin, P.: Stochastic estimation of organized turbulent structure-homogeneous shear-flow. J. Fluid Mech. 190, 531–559 (1988)

    Article  MATH  Google Scholar 

  34. Naguib, M., Wark, C.E., Juckenhofel, O.: Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer. Phys. Fluids 13, 2611 (2001)

    Article  MATH  Google Scholar 

  35. Guezennec, Y.G.: Stochastic estimation of coherent structures in turbulent boundary-layers. Phys. Fluids A-Fluid 1(6), 1054–1060 (1989)

    Article  MathSciNet  Google Scholar 

  36. Murray, E., Ukeiley, L.S.: Estimation of the flow field from surface pressure measurements in an open cavity. AIAA J. 41, 969 (2003)

    Article  Google Scholar 

  37. Hudy, L.M., Naguib, A., Humphreys, W.M.: Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys. Fluids 19, 024103 (2007)

    Article  MATH  Google Scholar 

  38. Kostas, J., Soria, J., Chong, M.S.: Particle image velocimetry measurements of a backward-facing step flow. Exp. Fluids 33, 838–853 (2002)

    Article  Google Scholar 

  39. Scarano, F., Riethmuller, M.: Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26, 513–523 (1999)

    Article  Google Scholar 

  40. Farabee, M., Casarella, M.J.: Measurements of fluctuating wall pressure for separated/reattached boundary layer flows. ASME. J. Vib., Acoust., Stress, Reliab. Des. 108, 301 (1986)

    Article  Google Scholar 

  41. Castro, P., Haque, A.: The structure of a turbulent shear layer bounding a separation region. J. Fluid Mech. 179, 439 (1987)

    Article  Google Scholar 

  42. Driver, D.M., Seegmiller, H.L., Marvin, J.G.: Time-Dependent Behaviour of a reattaching shear layer. AIAA J. 25, 914–919 (1987)

    Article  Google Scholar 

  43. Heenan, A.F., Morrison, J.F.: Passive control of pressure fluctuations generated by separated flow. AIAA J. 36, 1014–1022 (1998)

    Article  Google Scholar 

  44. Li, Z., Bai, H., Gao, N.: Response of turbulent fluctuations to the periodic perturbations in a flow over a backward facing step. Theor. Appl. Mech. Lett. 5(5), 191–195 (2015)

    Article  Google Scholar 

  45. Nadge, P.M., Govardhan, R.N.: High Reynolds number flow over a backward-facing step: structure of the mean separation bubble. Exp. Fluids 55, 1657 (2014)

    Article  Google Scholar 

  46. Spazzini, P.G., Iuso, G., Onorato, M., Zurlo, N., Di Cicca, G.M.: Unsteady behavior of back-facing step flow. Exp. Fluids 30, 551–561 (2001)

    Article  Google Scholar 

  47. Nguyen, T.D., CraigWells, J., Mokhasi, P., Rempfer, D.: Proper orthogonal decomposition-based estimations of the flow field from particle image velocimetry wall-gradient measurements in the backward-facing step flow. Meas. Sci. and Tech. 21, 115406 (2010)

    Article  Google Scholar 

  48. Piponniau, S., Collin, E., Dupont, P., Debieve, J.-F.: Simultaneous wall pressure-PIV measuremnts in a shock wake/turbulent boundary layer interaction. In: 7th International Symp. on Turbul and Shear Flow Phenomena (2011)

  49. Duriez, T., Brunton, S., Noack, B.R.: Learning control — taming non-linear dynamics and turbulence. Fluid Mech. and Its Appli. 116. Springer, Berlin (2017)

    MATH  Google Scholar 

  50. Chovet, C., Keirsbulck, L., Noack, B.R., Lippert, M., Foucaut, J.-M.: Machine learning control for experimental shear flows targeting the reduction of a recirculation bubble, pp 1–4. 20Th World Congress IFAC, Toulouse (2017)

    Google Scholar 

Download references

Acknowledgements

This work was carried out within the framework of the CNRS Research Federation on Ground Transports and Mobility, in articulation with the Elsat2020 project supported by the European Community, the French Ministry of Higher Education and Research, the Hauts de France Regional Council. The authors gratefully acknowledge the support of these institutions.The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Chovet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chovet, C., Lippert, M., Keirsbulck, L. et al. Unsteady Behavior of a Backward-facing Step in Forced Flow. Flow Turbulence Combust 102, 145–165 (2019). https://doi.org/10.1007/s10494-018-9944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9944-0

Keywords

Navigation