Advertisement

Flow, Turbulence and Combustion

, Volume 101, Issue 2, pp 603–625 | Cite as

Large-Eddy Simulation of Kerosene Spray Ignition in a Simplified Aeronautic Combustor

  • L. Hervo
  • J. M. Senoner
  • A. Biancherin
  • B. Cuenot
Article

Abstract

The current work presents the Large Eddy Simulation (LES) of a kerosene spray ignition phase in a simplified aeronautical combustor for which detailed experimental data are available. The carrier phase is simulated using an unstructured multi-species compressible Navier-Stokes solver while the dispersed liquid phase is modeled with a Lagrangian approach. An energy deposition model neglecting the presence of a plasma phase in the very first instants of the energy deposition process, a reduced kinetic scheme and a simplified spray injection model are combined to achieve both a reasonable computational expense and a satisfactory overall accuracy. Following a brief description of the validation of these models, non reactive gaseous and two-phase flow LES’s of the target combustor are performed. Excellent agreement with experiments is observed for the non reactive gaseous simulations. The dispersed phase velocity fields are also well reproduced while discrepancies appear for the spatial size distribution of the particles. Finally, numerical snapshots of a successful ignition phase are shown and discussed.

Keywords

Large Eddy Simulation Dispersed two-phase flow Combustion Ignition Spray Euler Lagrange formalism 

Notes

Acknowledgements

The financial support of the Direction Générale de l’Armement (DGA), the French Government Defense procurement and technology agency, is gratefully acknowledged. The authors would like to warmly thank Mikael Orain, Olivier Rouzaud, Lionel Matuszewski and Nicolas Bertier for useful discussions.

Compliance with Ethical Standards

Loïc Hervo’s PhD thesis was partially funded by the Direction Générale de l’Armement (DGA), the French Government Defense procurement and technology agency.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maly, R., Vogel, M.: Initiation and propagation of flame fronts in lean CH4-air mixtures by the three modes of the ignition spark. In: 17th International Symposium on Combustion, pp 821–831. The Combustion Institute, Pittsburgh (1978),  https://doi.org/10.1016/S0082-0784(79)80079-X CrossRefGoogle Scholar
  2. 2.
    Eyssartier, A., Cuenot, B., Gicquel, L.Y., Poinsot, T.: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames. Combust. Flame 160(7), 1191–1207 (2013).  https://doi.org/10.1016/j.combustflame.2013.01.017 CrossRefGoogle Scholar
  3. 3.
    Neophytou, A., Richardson, E., Mastorakos, E.: Spark ignition of turbulent recirculating non-premixed gas and spray flames: a model for predicting ignition probability. Combust. Flame 159(4), 1503–1522 (2012).  https://doi.org/10.1016/j.combustflame.2011.12.015 CrossRefGoogle Scholar
  4. 4.
    Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1–2), 2–22 (2008).  https://doi.org/10.1016/j.combustflame.2008.02.006 CrossRefGoogle Scholar
  5. 5.
    Esclapez, L., Riber, E., Cuenot, B.: Ignition probability of a partially premixed burner using LES. Proc. Combust. Inst. 35(3), 3133–3141 (2015).  https://doi.org/10.1016/j.proci.2014.07.040 CrossRefGoogle Scholar
  6. 6.
    Thiele, M., Selle, S., Riedel, U., Warnatz, J., Maas, U.: Numerical simulation of spark ignition including ionization. Int. Symp. Combust. 28(1), 1177–1185 (2000).  https://doi.org/10.1016/S0082-0784(00)80328-8 Google Scholar
  7. 7.
    Duclos, J.M., Colin O.: Arc and kernel tracking ignition model for 3D spark ignition engine calculations. In: Fifth International Symposium on Diagnostics, Modelling of Combustion in Internal Combustion Engines (COMODIA). Nagoya, pp 343–350 (2001)Google Scholar
  8. 8.
    Dahms, R., Drake, M., Fansler, T., Kuo, T.W., Peters, N.: Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation. Combust. Flame 158(11), 2229–2244 (2011)CrossRefGoogle Scholar
  9. 9.
    Colin, O., Truffin, K.: A spark ignition model for Large Eddy Simulation based on an FSD transport equation (ISSIM-LES). Proc. Combust. Inst. 33(2), 3097–3104 (2011).  https://doi.org/10.1016/j.proci.2010.07.023 CrossRefGoogle Scholar
  10. 10.
    Richard, S., Vermorel, O., Veynante, D.: Development of LES models based on the flame surface density approach for ignition and combustion in SI engines. In: ECCOMAS Thematic Conference on Computational Combustion, pp 1–20 (2005)Google Scholar
  11. 11.
    Enaux, B.: Simulation aux Grandes Echelles d’un moteur à allumage commandé—évaluations des variabilités cycliques (in French). PhD thesis, Université de Toulouse, France (2010)Google Scholar
  12. 12.
    Lacaze, G., Richardson, E., Poinsot, T.: Large Eddy Simulation of spark ignition in a turbulent methane jet. Combust. Flame 156(10), 1993–2009 (2009).  https://doi.org/10.1016/j.combustflame.2009.05.006 CrossRefGoogle Scholar
  13. 13.
    Neophytou, A., Mastorakos, E.: Simulations of laminar flame propagation in droplet mists. Combust. Flame 156(8), 1627–1640 (2009).  https://doi.org/10.1016/j.combustflame.2009.02.014 CrossRefGoogle Scholar
  14. 14.
    Aggarwal, S.: A review of spray ignition phenomena: present status and future research. Prog. Energy Combust. Sci. 24(6), 565–600 (1998).  https://doi.org/10.1016/S0360-1285(98)00016-1 CrossRefGoogle Scholar
  15. 15.
    Mastorakos, E.: Forced ignition of turbulent spray flames. Proc. Combust. Inst. 36(2), 2367–2383 (2017).  https://doi.org/10.1016/j.proci.2016.08.044 CrossRefGoogle Scholar
  16. 16.
    Bruyat, A.: Influence de l’évaporation de gouttes multicomposant sur la combustion et des effets diphasiques sur l’allumage d’un foyer aéronautique (in French). PhD thesis, Université de Toulouse, France (2012)Google Scholar
  17. 17.
    McBride, B.J., Zehe, M.J., Gordon, S.: NASA Glenn coefficients for calculating thermodynamic properties of individual species. Tech. Rep. NASA/TP-2002-211556, E-13336, NAS 1.60:211556. NASA Glenn Research Center, Cleveland (2002)Google Scholar
  18. 18.
    Renou, B., Boukhalfa, A.: An experimental study of freely propagating premixed flames at various Lewis numbers. Combust. Sci. Technol. 162(1), 347–370 (2001).  https://doi.org/10.1080/00102200108952148 CrossRefGoogle Scholar
  19. 19.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards, Flourtown (2005)Google Scholar
  20. 20.
    Teets, R., Sell, J.: Calorimetry of ignition sparks. SAE transactions 97, 371–383 (1988).  https://doi.org/10.4271/880204 CrossRefGoogle Scholar
  21. 21.
    Lecourt, R.: TIMECOP-AE WP2 D2.2.1c—injection system two-phase flow characterisation (LDA-PDA). STREP AST5-CT-2006-030828. Tech. rep., ONERA, Fauga (2008)Google Scholar
  22. 22.
    Rosa, N.G.: Phénomènes d’allumage d’un foyer de turbomachine en conditions de haute altitude (in French). PhD thesis, Institut National Polytechnique de Toulouse, ISAE (2008)Google Scholar
  23. 23.
    Lang, A., Lecourt, R., Giuliani, F.: Statistical evaluation of ignition phenomena in turbojet engines. In: ASME Turbo Expo 2010: Power for Land, Sea, and Air, pp 985–992. American Society of Mechanical Engineers (2010),  https://doi.org/10.1115/GT2010-23229
  24. 24.
    Linassier, G.: étude expérimentale et numérique de l’allumage des turboréacteurs en conditions de haute altitude (in French). PhD thesis, Université de Toulouse, France (2012)Google Scholar
  25. 25.
    Smagorinsky, J.: General circulation experiments with the primitive equations 1. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963).  https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 CrossRefGoogle Scholar
  26. 26.
    Eyssartier, A.: Study and modelisation of stationnary and transient two-phase flow combustion. PhD thesis, INP Toulouse. France (2012)Google Scholar
  27. 27.
    Murrone, A., Villedieu, P.: Numerical modeling of dispersed two-phase flows. Aerospace Lab 2, 1–13 (2011)Google Scholar
  28. 28.
    Williams, F.: Spray combustion and atomization. Phys. Fluids 1, 541 (1958).  https://doi.org/10.1063/1.1724379 CrossRefGoogle Scholar
  29. 29.
    Zuzio, D., Thuillet, S., Senoner, J.M., Laurent, C., Rouzaud, O., Gajan, P.: Multi-solver LES simulation of the atomization of a cross-flow liquid jet in a channel. In: Proceedings of the 4th INCA Colloquium, Paris-Saclay (2017)Google Scholar
  30. 30.
    Sanjosé, M., Senoner, J.M., Jaegle, F., Cuenot, B., Moreau, S., Poinsot, T.: Fuel injection model for Euler–Euler and Euler–Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor. Int. J. Multiphase Flow 37(5), 514–529 (2011).  https://doi.org/10.1016/j.ijmultiphaseflow.2011.01.008 CrossRefGoogle Scholar
  31. 31.
    Lefebvre, A.H.: Atomization and sprays. Taylor & Francis, New York (1989)Google Scholar
  32. 32.
    Schiller, L., Nauman, A.: A drag coefficient correlation. VDI Zeitung 77, 318–320 (1935)Google Scholar
  33. 33.
    Spalding, D.: A standard formulation of the steady convective mass transfer problem. Int. J. Heat Mass Transf. 1(2–3), 192–207 (1960).  https://doi.org/10.1016/0017-9310(60)90022-3 CrossRefGoogle Scholar
  34. 34.
    Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Process. 48(4), 173 (1952)Google Scholar
  35. 35.
    Abramzon, B., Sirignano, W.A.: Droplet vaporisation model for spray combustion calculations. Int. J. Heat Mass Transf. 32(9), 1605–1618 (1989).  https://doi.org/10.1016/0017-9310(89)90043-4 CrossRefGoogle Scholar
  36. 36.
    Maxey, M., Patel, B.: Localized force representations for particles sedimenting in Stokes flow. Int. J. Multiphase Flow 27(9), 1603–1626 (2001).  https://doi.org/10.1016/S0301-9322(01)00014-3 CrossRefzbMATHGoogle Scholar
  37. 37.
    Haselbacher, A., Najjar, F.M., Ferry, J.P.: An efficient and robust particle-localization algorithm for unstructured grids. J. Comput. Phys. 225(2), 2198–2213 (2007).  https://doi.org/10.1016/j.jcp.2007.03.018 CrossRefGoogle Scholar
  38. 38.
    Rosa, N.G., Villedieu, P., Dewitte, J., Lavergne, G.: A new droplet-wall interaction model. In: Proceedings of the 10th International Conference on Liquid Atomization and Spray System, Tokyo (2006)Google Scholar
  39. 39.
    Senoner, J.M.: Simulations aux grandes échelles de l’écoulement diphasique dans un brûleur aéronautique par une approche Euler-Lagrange (in English). PhD thesis, Université de Toulouse (2010)Google Scholar
  40. 40.
    Franzelli, B., Riber, E., Sanjosé, M., Poinsot, P.: A two-step chemical scheme for Large-Eddy Simulation of kerosene-air flames. Combust. Flame 157(7), 1364–1373 (2010).  https://doi.org/10.1016/j.combustflame.2010.03.014 CrossRefGoogle Scholar
  41. 41.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for Large Eddy Simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000).  https://doi.org/10.1063/1.870436 CrossRefzbMATHGoogle Scholar
  42. 42.
    Charlette, F., Veynante, D., Meneveau, C.: A power-law wrinkling model for LES of premixed turbulent combustion. Part I—non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002).  https://doi.org/10.1016/S0010-2180(02)00400-5 CrossRefGoogle Scholar
  43. 43.
    Boileau, M.: Simulation aux grandes échelles de l’allumage diphasique des foyers aéronautiques (in French). Phd thesis, INP Toulouse (2007)Google Scholar
  44. 44.
    Philip, M., Boileau, M., Vicquelin, R., Riber, E., Schmitt, T., Cuenot, B., Durox, D., Candel, S.: Large Eddy Simulations of the ignition sequence of an annular multiple-injector combustor. Proc. Combust. Inst. 35(3), 3159–3166 (2015).  https://doi.org/10.1016/j.proci.2014.07.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • L. Hervo
    • 1
  • J. M. Senoner
    • 1
  • A. Biancherin
    • 2
  • B. Cuenot
    • 3
  1. 1.ONERA / DMPEUniversité de ToulouseToulouseFrance
  2. 2.ONERA / DMPEUniversité Paris SaclayChâtillonFrance
  3. 3.CERFACSToulouseFrance

Personalised recommendations