A Thickened-Hole Model for Large Eddy Simulations over Multiperforated Liners

  • R. Bizzari
  • D. Lahbib
  • A. Dauptain
  • F. Duchaine
  • L. Y. M. Gicquel
  • F. Nicoud
Article

Abstract

In aero-engines, mutiperforation cooling systems are often used to shield the combustor wall and ensure durability of the engine. Fresh air coming from the casing goes through thousands of angled perforations and forms a film which protects the liner. When performing Large Eddy Simulations (LES) of a real engine, the number of sub-millimetric holes is far too large to allow a complete and accurate description of each aperture. Homogeneous models allow to simulate multiperforated plates with a mesh size bigger than the hole but fail in representing the jet penetration and mixing. A heterogeneous approach is proposed in this study, where the apertures are thickened if necessary so that the jet-crossflow interaction is properly represented. Simulations using homogeneous and thickened-hole models are compared to a fully resolved computation for various grid resolutions in order to illustrate the potential of the method.

Keywords

Aerodynamics LES Multiperforated plate Modelling 

Notes

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Schulz, A.: Combustor liner cooling technology in scope of reduced pollutant formation and rising thermal efficiencies. Ann. N. Y. Acad. Sci. 934(1), 135–146 (2001)CrossRefGoogle Scholar
  2. 2.
    Rizk, N., Mongia, H.: Low NOx rich-lean combustion concept application. AIAA paper (91-1962) (1991)Google Scholar
  3. 3.
    Goldstein, R.J.: Film cooling. Adv. Heat Tran. 7, 321–379 (1971)CrossRefGoogle Scholar
  4. 4.
    Lefebvre, A.H.: Gas Turbines Combustion. Taylor & Francis, New York (1999)Google Scholar
  5. 5.
    Poprawe, R., Kelbassa, I., Walther, K., Witty, M., Bohn, D., Krewinkel, R.: Optimising and manufacturing a laser-drilled cooling hole geometry for effusion-cooled multi-layer plates. Proc. of ISROMAC-12, Paper (20091) (2008)Google Scholar
  6. 6.
    Mayle, R.E., Camarata, F.J.: Multihole cooling effectiveness and heat transfer. J. Heat Transf. 97, 534–538 (1975)CrossRefGoogle Scholar
  7. 7.
    Pietrzyk, J.R., Bogard, D.G., Crawford, M.E.: Hydrodynamic measurements of jets in crossflow for gas turbine film cooling applications. J. Turbomach. 111, 139–145 (1989)CrossRefGoogle Scholar
  8. 8.
    Sinha, A.K., Bogard, D.G., Crawford, M.E.: Film-cooling effectiveness downstream of a single row of holes with variable density ratio. J. Turbomach. 113, 442–449 (1991)CrossRefGoogle Scholar
  9. 9.
    Crawford, M.E., Kays, W.M., Moffat, R.J.: Full-coverage film cooling. part I: comparison of heat transfer data for three injection angles. J. Eng. Gas Turbines Power 102, 1000–1005 (1980)CrossRefGoogle Scholar
  10. 10.
    Hale, C.A., Plesniak, M.W., Ramadhyani, S.: Film cooling effectiveness for short film cooling holes fed by a narrow plenum. J. Turbomach. 122, 553–557 (2000)CrossRefGoogle Scholar
  11. 11.
    LeBrocq, P.V., Launder, B.E., Priddin, C.H.: Discrete hole injection as a means of transpiration cooling; an experimental study. Proc. Inst. Mech. Eng. 187(17), 149–157 (1973)CrossRefGoogle Scholar
  12. 12.
    Metzger, D.E., Takeuchi, D.I., Kuenstler, P.A.: Effectiveness and heat transfer with full-coverage film-cooling. ASME Paper 73-GT-18 (1973)Google Scholar
  13. 13.
    Briones, A.M., Rankin, B.A., Stouffer, S.D., Erdmann, T.J., Burrus, D.L.: Parallelized, automated, and predictive imprint cooling model for combustion systems. J. Eng. Gas Turbines Power 139(3), 031505 (2017)CrossRefGoogle Scholar
  14. 14.
    Burdet, A., Abhari, R.S., Rose, M.G.: Modeling of film cooling—Part II model for use in three-dimensional computational fluid dynamics. J. Turbomach. 129 (2), 221–231 (2007)CrossRefGoogle Scholar
  15. 15.
    Mazzei, L., Mazzei, L., Andreini, A., Andreini, A., Facchini, B., Facchini, B.: Assessment of modelling strategies for film cooling. Int. J. Numer. Methods Heat Fluid Flow 27(5), 1118–1127 (2017)CrossRefGoogle Scholar
  16. 16.
    Mendez, S., Nicoud, F.: Adiabatic homogeneous model for flow around a multiperforated plate. AIAA J. 46(10), 2623–2633 (2008)CrossRefGoogle Scholar
  17. 17.
    Rida, S., Reynolds, R., Chakracorty, S., Gupta, K.: Imprinted effusion modeling and dynamic cd calculation in gas turbine combustors. ASME Paper No GT2012-68804 (2012)Google Scholar
  18. 18.
    Voigt, S., Noll, B., Aigner, M.: Development of a macroscopic CFD model for effusion cooling applications. ASME Paper No GT2012-68251 (2012)Google Scholar
  19. 19.
    Mendez, S., Nicoud, F.: Large-eddy simulation of a bi-periodic turbulent flow with effusion. J. Fluid Mech. 598, 27–65 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Most, A., Savary, N., Bérat, C.: Reactive flow modelling of a combustion chamber with a multiperforated liner. AIAA Paper (2007–5003) (2007)Google Scholar
  21. 21.
    Lahbib, D.: Modélisation Aérodynamique et Thermique des Multiperforations en LES. PhD thesis, Université Montpellier II (2015)Google Scholar
  22. 22.
    Koupper, C., Gicquel, L., Duchaine, F., Bonneau, G.: Advanced combustor exit plane temperature diagnostics based on large eddy simulations. Flow Turbul. Combust. 95(1), 79–96 (2015)CrossRefGoogle Scholar
  23. 23.
    Jaegle, F., Cabrit, O., Mendez, S., Poinsot, T.: Implementation methods of wall functions in cell-vertex numerical solvers. Flow Turbul. Combust. 85(2), 245–272 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Miron, P.: Étude Expérimentale des Lois de Parois et du Film de Refroidissement Produit par une Zone Multiperforée sur une Paroi Plane. Phd thesis, Université de Pau et des Pays de l’Adour (2005)Google Scholar
  25. 25.
    Florenciano, J.-L., Bruel, P.: LES fluid–solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls. Aerosp. Sci. Technol. 53, 61–73 (2016)CrossRefGoogle Scholar
  26. 26.
    Florenciano, J.: Etude de la Réponse d’un Écoulement Avec Transfert Pariétal de Masse à un Forçage Acoustique. PhD thesis, Université de Pau (2013)Google Scholar
  27. 27.
    Petre, B., Dorignac, E., Vullierme, J.J.: Study of the influence of the number of holes rows on the convective heat transfer in the case of full coverage film cooling. Int. J. Heat Mass Transf. 46(18), 3477–3496 (2003)CrossRefGoogle Scholar
  28. 28.
    Lamouroux, J., Richard, S., Malé, Q., Staffelbach, G., Dauptain, A., Misdariis, A.: On the combination of large eddy simulation and phenomenological soot modelling to calculate the smoke index from aero-engines over a large range of operating conditions. In: ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, pp. V04BT04A004–V04BT04A004. American Society of Mechanical Engineers (2017)Google Scholar
  29. 29.
    Thomas, M., Dauptain, A., Gicquel, L., Duchaine, F., Koupper, C., Nicoud, F.: Comparison of heterogeneous and homogeneous coolant injection models for large eddy simulation of multiperforated liners present in a combustion simulator. ASME Paper No GT2017-64622 (2017)Google Scholar
  30. 30.
    Vignat, G., Taliercio, G., Lamouroux, J., Da Veiga, S., Savary, N., Duchaine, P.: Analysis of performance sensitivity to geometrical variations of a modern helicopter engine combustor using les simulations. In: ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, pp. V04BT04A003–V04BT04A003. American Society of Mechanical Engineers (2017)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CERFACSToulouseFrance
  2. 2.IMAGUniv Montpellier, CNRSMontpellierFrance

Personalised recommendations