Advertisement

Flow, Turbulence and Combustion

, Volume 100, Issue 2, pp 437–455 | Cite as

Parametric Study of Alternating Flow Patterns in Non-Reacting Multiple-Swirl Flows

  • Brian Dolan
  • Rodrigo Villalva Gomez
  • Ephraim Gutmark
Article
  • 129 Downloads

Abstract

Multiple nozzle combustors, under certain conditions, may result in flowfields that differ between nozzles in an alternating pattern. Previous work has provided some clues on the parameters which govern the appearance of this behavior, but there is a lack of systematic studies. A series of non-reacting simulations of adjacent swirling flows is used to investigate the effect of nozzle exit flare angle and swirl number on the presence of the alternating flow pattern. Two-nozzle simulations are shown to accurately predict if an asymmetric flow characteristic appears and are therefore used in the parametric investigation. Alternating flow patterns are predicted at nozzle exit flare angles of 105 degrees (for a swirl number of 0.79) and 120 degrees (for a swirl number of 0.69 and 0.79). Under conditions close to the stability boundary between symmetric and asymmetric flows, the nozzle exit flare and increased swirl number push the shear layers against the dome wall so that the flows between each nozzle are largely opposite in direction. An increase in nozzle exit flare above 120 results in separated flows exiting from the inlet and a return to a symmetric flow state. This is consistent with a proposed physical mechanism based on hydrodynamic stability in turbulent opposed jets.

Keywords

Swirl-stabilized combustion Nozzle interaction Alternating flow pattern Computational fluid dynamics 

Notes

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Prog. Energy Combust. Sci. 27, 431–481 (2001)CrossRefGoogle Scholar
  2. 2.
    Syred, N., Beer, J.: Combustion in swirling flows: a review. Combust. Flame 23, 143–102 (1974)CrossRefGoogle Scholar
  3. 3.
    H.Y., W., McDonell, V., Samuelsen, S.: Influence of hardware design on teh flow field structures and the patterns of droplet dispersion Part I - Mean quantities. J. Eng. Gas Turbines Power 117(2), 282–289 (1995)CrossRefGoogle Scholar
  4. 4.
    Yadav, N., Kushari, A.: Effect of swirl on the turbulent behavior of a dump combustor flow. J. Aerosp. Eng. 224(6), 705–717 (2009)Google Scholar
  5. 5.
    Woodmansee, M., Ball, I., Barlow, K.: Experimental flowfield characterization of a combustor swirl cup. In: 32nd AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, AIAA 2002–2864 (2002)Google Scholar
  6. 6.
    Li, G., Gutmark, E.J.: Boundary condition effects on nonreacting and reacting flows in a multiswirl combustor. AIAA J. 44(3), 444–456 (2006)CrossRefGoogle Scholar
  7. 7.
    Favaloro, S., Nejad, A., Ahmed, S.: Experimental and computational investigation of isothermal swirling flow in an axisymmetric dump combustor. J. Propuls. Power 7(3), 348–356 (1991)CrossRefGoogle Scholar
  8. 8.
    Ajmani, K., Breisacher, K.J.: Computational modeling of discrete-jet lean direct injectors. In: 48th AIAA Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, AIAA 2012-4270 (2012)Google Scholar
  9. 9.
    Boxx, I., Carter, C.D., Stohr, M., Meier, W.: Study of the mechanisms for flame stabilization in a gas turbine model combustor using kHz laser diagnostics. Exp. Fluids 54, 1532 (2013)CrossRefGoogle Scholar
  10. 10.
    Stohr, M., Boxx, I., Carter, C. D., Meier, W.: Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159(8), 2636–2649 (2012)CrossRefGoogle Scholar
  11. 11.
    Markovich, D., Abdurakipov, S., Chikishev, L., Dulin, V., Hanjalic, K.: Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys. Fluids 26, 065109 (2014)CrossRefGoogle Scholar
  12. 12.
    Fanaca, D., Alemela, P., Hirsch, C., Sattelmayer, T.: Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber. J. Eng. Gas Turbines Power 132, 071502 (2010)CrossRefGoogle Scholar
  13. 13.
    Cho, C.H., Sohn, C.H., Cho, J.H., Kim, H.S.: Effects of burner interaction on NOx emission from swirl premix burner in a gas turbine combustor. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, GT2014–26174 (2014)Google Scholar
  14. 14.
    Cordier, M., Vandel, A., Renou, B., Cabot, G., Boukhalfa, M., Esclapez, L., Barré, D., Riber, E., Cuenot, B., Gicquel, L.: Experimental and Numerical Analysis of an Ignition Sequence in a Multiple-Injectors Burner. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, GT2013–94384 (2013)Google Scholar
  15. 15.
    Samarasinghe, J., Peluso, S., Szedlmayer, M., De Rosa, A., Quay, B., Santavicca, D.: Three-Dimensional Chemiluminescence Imaging of Unforced and Forced Swirl-Stabilized Flames in a Lean Premixed Multi-Nozzle Can Combustor. J. Eng. Gas Turbines Power 135(10), GTP-13-1194 (2013)CrossRefGoogle Scholar
  16. 16.
    Dolan, B., Villalva Gomez, R., Zink, G., Pack, S., Gutmark, E.: Effect of nozzle spacing on NOX emissions and lean operability. In: 54th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, AIAA 2016-2150 (2016)Google Scholar
  17. 17.
    Lefebvre, A., Ballal, D.: Gas Turbine Combustion: Alternative Fuels and Emissions. 3rd edn. Taylor and Francis, Boca Raton (2010)CrossRefGoogle Scholar
  18. 18.
    Kao, Y.-H., Tambe, S.B., Jeng, S.-M.: Aerodynamics study of a linearly-arranged 5-swirler array. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, GT2014–25094 (2014)Google Scholar
  19. 19.
    Rojatkar, P., Kao, Y., Jog, M., Jeng, S.: Effect of swirler offset on aerodynamics of multi-swirler arrays. In: Proceedings of ASME Turbo Expo 2014, American Society of Mechanical Engineers, GT2014-26236 (2014)Google Scholar
  20. 20.
    Durox, D., Prieur, K., Schuller, T. , Candel, S.: Different flame patterns linked with swirling injector interactions in an annular combustor. J. Eng. Gas Turbines Power 138(10), 101504 (2016)CrossRefGoogle Scholar
  21. 21.
    Dolan, B.J., Villalva Gomez, R., Gutmark, E.J.: Optical measurements of interacting lean direct injection fuel nozzles with varying spacing. In: Proceedings of ASME Turbo Expo 2015, American Society of Mechanical Engineers, GT2015-43706 (2015)Google Scholar
  22. 22.
    Dolan, B., Villalva, R., Munday, D., Zink, G., Pack, S., Gutmark, E.: Flame dynamics in a multi-nozzle staged combustor during high power operation. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, GT2014–26164 (2014)Google Scholar
  23. 23.
    Patankar, S., Spalding, D.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15 (10), 1787–1806 (1972)CrossRefMATHGoogle Scholar
  24. 24.
    Shih, T., Liou, W., Shabbir, A., Yang, Z., Zhu, J.: A new k-𝜖 eddy-viscosity model for high reynolds number turbulent flows - model development and validation. Comput. Fluids 24(3), 227–238 (1995)CrossRefMATHGoogle Scholar
  25. 25.
    Durox, D., Moeck, J. P., Bourgouin, J.-F., Morenton, P., Viallon, M., Schuller, T., Candel, S.: Flame dynamics of a variable swirl number system and instability control. Combust. Flame 160(9), 1729–1742 (2013)CrossRefGoogle Scholar
  26. 26.
    Pawlowski, R., Salinger, A., Shadid, J., Mountziaris, T.: Bifurcation and stability analysis of laminar isothermal counterflowing jets. J. Fluid Mech. 551, 117–139 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Li, W.-F., Yao, T.-L., Liu, H.-F., Wang, F.-C.: Experimental investigation of flow regimes of axisymmetric and planar opposed jets. AIChE J. 57(6), 1434–1445 (2010)CrossRefGoogle Scholar
  28. 28.
    Li, W.-F., Yao, T.-L., Wang, F.-C.: Study on factors influencing stagnation point offset of turbulent opposed jets. AIChE J. 56(10), 2513–2522 (2010)CrossRefGoogle Scholar
  29. 29.
    Denshchikov, V., Kondrat’ev, V., Romashov, A.: Interaction between two opposed jets. Fluid Dyn. 13(6), 924–926 (1978)CrossRefGoogle Scholar
  30. 30.
    Besbes, S., Mhiri, H., Le Palec, G., Bournot, P.: Numerical and experimental study of two turbulent opposed plane jets. Heat Mass Transf. 39, 675–686 (2003)CrossRefGoogle Scholar
  31. 31.
    Elbanna, H., Sabbagh, J., Rashed, M.: Interception of two equal turbulent jets. AIAA J. 23(7), 985–986 (1985)CrossRefGoogle Scholar
  32. 32.
    Kind, R., Suthanthiran, K.: The interaction of two opposing plane turbulent wall jets. J. Fluid Mech. 58(2), 389–402 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Brian Dolan
    • 1
  • Rodrigo Villalva Gomez
    • 1
  • Ephraim Gutmark
    • 1
  1. 1.University of CincinnatiCincinnatiUSA

Personalised recommendations