Flow, Turbulence and Combustion

, Volume 100, Issue 2, pp 341–363 | Cite as

A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures

  • Lluís Jofre
  • Stefan P. Domino
  • Gianluca Iaccarino
Article

Abstract

Motivated by the sizable increase of available computing resources, large-eddy simulation of complex turbulent flow is becoming increasingly popular. The underlying filtering operation of this approach enables to represent only large-scale motions. However, the small-scale fluctuations and their effects on the resolved flow field require additional modeling. As a consequence, the assumptions made in the closure formulations become potential sources of incertitude that can impact the quantities of interest. The objective of this work is to introduce a framework for the systematic estimation of structural uncertainty in large-eddy simulation closures. In particular, the methodology proposed is independent of the initial model form, computationally efficient, and suitable to general flow solvers. The approach is based on introducing controlled perturbations to the turbulent stress tensor in terms of magnitude, shape and orientation, such that propagation of their effects can be assessed. The framework is rigorously described, and physically plausible bounds for the perturbations are proposed. As a means to test its performance, a comprehensive set of numerical experiments are reported for which physical interpretation of the deviations in the quantities of interest are discussed.

Keywords

Large-eddy simulation Predictive science Turbulence modeling Uncertainty quantification 

Notes

Acknowledgments

This work was funded by the United States Department of Energy’s (DoE) National Nuclear Security Administration (NNSA) under the Predictive Science Academic Alliance Program (PSAAP) II at Stanford University.

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to help improve the quality of the paper.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hermeth, S., Staffelbach, G., Gicquel, L.Y.M., Poinsot, T.: LES Evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber. Proc. Combust. Inst. 34, 3165–3173 (2013)CrossRefGoogle Scholar
  2. 2.
    Bulat, G., Fedina, E., Fureby, C., Stopper, U.: Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proc. Combust. Inst. 35, 3175–3183 (2015)CrossRefGoogle Scholar
  3. 3.
    Masquelet, M., Yan, J., Dord, A., Laskowski, G., Shunn, L., Jofre, L., Iaccarino, G.: Uncertainty quantification in large eddy simulations of a rich-dome aviation gas turbine. In: Proceeding of the ASME Turbo Expo 2017, GT2017-64835, pp 1–11 (2017)Google Scholar
  4. 4.
    Ang, J., Evans, K., Geist, A., Heroux, M., Hovland, P., Marques, O., Curfman, L., Ng, E., Wild, S.: Workshop on Extreme-Scale Solvers: Transition to Future Architectures. Tech. Rep., U.S, Department of Energy, Office of Advanced Scientific Computing Research (2012)Google Scholar
  5. 5.
    Ghosal, S.: An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125, 187–206 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Meyers, J., Geurts, B.J., Baelmans, M.: Database analysis of errors in large-eddy simulation. Phys. Fluids 15, 2740 (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Meldi, M., Lucor, D., Sagaut, P.: Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum? Phys. Fluids 23, 125,109 (2011)CrossRefGoogle Scholar
  8. 8.
    Meyers, J., Sagaut, P.: Evaluation of Smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows. Phys. Fluids 19, 095,105 (2007a)CrossRefMATHGoogle Scholar
  9. 9.
    Meyers, J., Sagaut, P.: Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models? Phys. Fluids 19, 048,105 (2007b)CrossRefMATHGoogle Scholar
  10. 10.
    Dunn, M.C., Shotorban, B., Frendi, A.: Uncertainty quantification of turbulence model coefficients via latin hypercube sampling method. J. Fluids. Eng. 133, 041,402 (2011)CrossRefGoogle Scholar
  11. 11.
    Lucor, D., Meyers, J., Sagaut, P.: Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos. J. Fluid. Mech. 585, 255–280 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cheung, S., Oliver, T., Prudencion, E., Pridhomme, S., Moser, R.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 96, 1137–1149 (2011)CrossRefGoogle Scholar
  13. 13.
    Völker, S., Moser, R., Venugopal, P.: Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14, 3675–3691 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Phillips, N.A.: Models for weather prediction. Annu. Rev. Fluid. Mech. 2, 251–292 (1970)CrossRefGoogle Scholar
  15. 15.
    Leith, C.E.: Objective methods for weather prediction. Annu. Rev. Fluid. Mech. 10, 107–128 (1978)CrossRefMATHGoogle Scholar
  16. 16.
    Gorlé, C., Iaccarino, G.: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations. Phys. Fluids 25, 055,105 (2013)CrossRefGoogle Scholar
  17. 17.
    Emory, M., Larsson, J., Iaccarino, G.: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures. Phys. Fluids 25, 110,822 (2013)CrossRefGoogle Scholar
  18. 18.
    Vasilyev, O.V., Lund, T.S., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82–104 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marsden, A.L., Vasilyev, O.V., Moin, P.: Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175, 584–603 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. A 18, 237–248 (1974)CrossRefGoogle Scholar
  21. 21.
    Lund, T.S.: The use of explicit filters in large eddy simulation. Comput. Math. Appl. 46, 603–616 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Carati, D., Winckelmans, G.S., Jeanmart, H.: On the modelling of the subgrid-scale and filtered-scale stress tensors in alrge-eddy simulation. J. Fluid. Mech. 441, 119–138 (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flow. Annu. Rev. Fluid. Mech. 16, 2150 (1984)CrossRefMATHGoogle Scholar
  24. 24.
    Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid. Mech. 91, 1–16 (1979)CrossRefMATHGoogle Scholar
  25. 25.
    Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. In: Proceeding of the AIAA 13th Fluid & Plasma Dynamics Conference, pp 1–10 (1980)Google Scholar
  26. 26.
    Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids. A 5, 3186–3195 (1993)CrossRefMATHGoogle Scholar
  27. 27.
    Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid. Mech. 32, 1–32 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather. Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  29. 29.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids. A 3, 1760–1765 (1991)CrossRefMATHGoogle Scholar
  30. 30.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient. Flow. Turbul. Combust. 62, 183–200 (1999)CrossRefMATHGoogle Scholar
  31. 31.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23, 085,106 (2011)CrossRefGoogle Scholar
  32. 32.
    Rozema, W., Bae, H.J., Moin, P., Verstappen, R.: Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27, 085,107 (2015)CrossRefGoogle Scholar
  33. 33.
    Jofre, L., Lehmkuhl, O., Ventosa, J., Trias, F.X., Oliva, A.: Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numer. Heat. Transfer, Part. B 65, 53–79 (2014)CrossRefGoogle Scholar
  34. 34.
    Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 2152–2164 (1986)CrossRefMATHGoogle Scholar
  35. 35.
    Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids. A 3, 2746–2757 (1991)CrossRefMATHGoogle Scholar
  36. 36.
    Schumann, U.: Realizability of Reynolds-stress turbulence models. Phys. Fluids 20, 721–725 (1977)CrossRefMATHGoogle Scholar
  37. 37.
    Vreman, B., Geurts, B., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid. Mech. 278, 351–362 (1994)CrossRefMATHGoogle Scholar
  38. 38.
    Lumley, J.L., Newman, G.: The return to isotropy of homogeneous turbulence. J. Fluid. Mech. 82, 161–178 (1977)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Choi, K.S., Lumley, J.L.: The return to isotropy of homogeneous turbulence. J. Fluid. Mech. 436, 59–84 (2001)CrossRefMATHGoogle Scholar
  40. 40.
    Banerjee, S., Krahl, R., Durst, F., Zenger, C.: Presentation of anisotropy properties of turbulence, invariants versus eigenvalues approaches. J. Turbul. 8, 1–27 (2007)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Kindlmann, G.: Superquadric tensor glyphs. In: Proceeding of the 6th Joint Eurographics-IEEE TCVG Conference, pp 147–154 (2004)Google Scholar
  42. 42.
    Teem: Tools to process and visualize scientific data and images. http://teem.sourceforge.net (2003)
  43. 43.
    Stolz, S., Adams, A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999)CrossRefMATHGoogle Scholar
  44. 44.
    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)Google Scholar
  45. 45.
    Piomelli, U., Cabot, W., Moin, P., Lee, S.: Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids 3, 1766–1771 (1991)CrossRefMATHGoogle Scholar
  46. 46.
    Lasserre, J.B.: A trace inequality for matrix product. IEEE Trans. Autom. Control. 40, 1500–1501 (1995)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Lund, T.S., Ghosal, S., Moin, P.: Numerical experiments with highly variable eddy viscosity model. Eng. Appl. LES 162, 7–11 (1993)Google Scholar
  48. 48.
    Domino, S.P.: Sierra low mach module: Nalu theory manual 1.0. Tech. Rep. SAND2015-3107w, Sandia National Laboratories, Unclassified Unlimited Release (UUR). https://github.com/NaluCFD/NaluDoc (2015)
  49. 49.
    Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11, 943–945 (1999)CrossRefMATHGoogle Scholar
  50. 50.
    Chapman, D., Kuhn, G.: The limiting behavior of turbulence near a wall. J. Fluid. Mech. 170, 265–292 (1986)CrossRefMATHGoogle Scholar
  51. 51.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press (2007)Google Scholar
  52. 52.
    Gullbrand, J., Chow, F.K.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid. Mech. 495, 323–341 (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Center for Turbulence ResearchStanford UniversityStanfordUSA
  2. 2.Computational Thermal and Fluid MechanicsSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations