Experimental and Applied Acarology

, Volume 74, Issue 4, pp 335–346 | Cite as

Contrasting structures of plant–mite networks compounded by phytophagous and predatory mite species

  • Walter Santos de Araújo
  • Rodrigo Damasco Daud


Differences in the feeding habits between phytophagous and predatory species can determine distinct ecological interactions between mites and their host plants. Herein, plant–mite networks were constructed using available literature on plant-dwelling mites from Brazilian natural vegetation in order to contrast phytophagous and predatory mite networks. The structural patterns of plant–mite networks were described through network specialization (connectance) and modularity. A total of 187 mite species, 65 host plant species and 646 interactions were recorded in 14 plant–mite networks. Phytophagous networks included 96 mite species, 61 host plants and 277 interactions, whereas predatory networks contained 91 mite species, 54 host plants and 369 interactions. No differences in the species richness of mites and host plants were observed between phytophagous and predatory networks. However, plant–mite networks composed of phytophagous mites showed lower connectance and higher modularity when compared to the predatory mite networks. The present results corroborate the hypothesis that trophic networks are more specialized than commensalistic networks, given that the phytophagous species must deal with plant defenses, in contrast to predatory mites which only inhabit and forage for resources on plants.


Acari Atlantic Forest Ecological networks Plant–mite interaction 



The authors thank Mário Almeida-Neto (Universidade Federal de Goiás), Joaquín Calatayud (Umeå University) and two anonymous reviewers for helpful suggestions, Leonardo Lima Bergamini (Instituto Brasileiro de Geografia e Estatística) for assistance in network analysis, Erik Russell Wild (University of Wisconsin-Stevens Point) for English revision, and Edgar Luiz de Lima (Universidade Estadual de Goiás) for help with the database compilation. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) under Grant [PNPD] to the first author.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Araújo WS, Daud RD (2017) Insights on plant mite occurrence in natural vegetation remnants from Brazil. Syst Appl Acarol 22:302–322CrossRefGoogle Scholar
  2. Araújo WS, Vieira MC, Lewinsohn TM, Almeida-Neto M (2015) Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant–herbivore networks. PLoS ONE 10:e0115606CrossRefPubMedCentralPubMedGoogle Scholar
  3. Arruda-Filho GP, Moraes GJ (2003) Stigmaeidae mites (Acari: Raphignathoidea) from Arecaceae of the Atlantic Forest in São Paulo State, Brazil. Neotrop Entomol 32:49–57CrossRefGoogle Scholar
  4. Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E 76:066102CrossRefGoogle Scholar
  5. Beckett SJ (2016) Improved community detection in weighted bipartite networks. R Soc Open Sci 3:140536CrossRefPubMedCentralPubMedGoogle Scholar
  6. Benítez-Malvido J, Dáttilo W (2015) Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways. Am J Bot 10:512–519CrossRefGoogle Scholar
  7. Buosi R, Feres RJF, Oliveira AR, Lofego AC, Hernandes FA (2006) Ácaros plantícolas (Acari) da “Estação Ecológica de Paulo de Faria”, Estado de São Paulo, Brasil. Biota Neotrop 6:1–20CrossRefGoogle Scholar
  8. Calatayud J, Hórreo JL, Madrigal-González J, Migeon A, Rodríguez MÁ, Magalhães S, Hortal J (2016) Geography and major host evolutionary transitions shape the resource use of plant parasites. PNAS 113:9840–9845CrossRefPubMedCentralPubMedGoogle Scholar
  9. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Evol Syst 27:305–335CrossRefGoogle Scholar
  10. Demite PR, Feres RJF (2005) Influência de vegetação vizinha na distribuição de ácaros em seringal (Hevea brasiliensis Muell. Arg., Euphorbiaceae) em São José do Rio Preto, SP. Neotrop Entomol 34:829–836CrossRefGoogle Scholar
  11. Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11Google Scholar
  12. Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24CrossRefGoogle Scholar
  13. Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567CrossRefGoogle Scholar
  14. Fenton B, Birch ANE, Malloch G, Lanham PG, Brennan RM (2000) Gall mite molecular phylogeny and its relationship to the evolution of plant host specificity. Exp Appl Acarol 24:831–861CrossRefPubMedGoogle Scholar
  15. Feres RJF, Lofego AC, Oliveira AR (2005) Ácaros plantícolas (Acari) da “Estação Ecológica Do Noroeste Paulista”, Estado de São Paulo, Brasil. Biota Neotrop 5:1–14CrossRefGoogle Scholar
  16. Ferreira JAM, Pallini A, Oliveira CL, Sabellis MW, Janssen A (2010) Leaf domatia do not affect population dynamics of the predatory mite Iphiseiodes zuluagai. Basic Appl Ecol 11:144–152CrossRefGoogle Scholar
  17. Grostal P, O’dowd DJ (1994) Plants, mites, and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97:308–315CrossRefPubMedGoogle Scholar
  18. Guimarães PR Jr, Rico-Gray V, Oliveira PS, Izzo TJ, Reis SF, Thompson JN (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17:1797–1803CrossRefPubMedGoogle Scholar
  19. Keifer HH, Baker EW, Kono T, Delfinado M, Styer WE (1982) An illustrated guide to plant abnormalities caused by eriophyid mites in North America. Agricultural Research Service, WashingtonGoogle Scholar
  20. Krantz GW, Lindquist EE (1979) Evolution of phytophagous mites (Acari). Annu Rev Entomol 24:121–158CrossRefGoogle Scholar
  21. Krantz GW, Walter DE (2009) A manual of acarology. Texas Tech University Press, LubbockGoogle Scholar
  22. Lewinsohn TM, Novotny V, Basset Y (2005) Insects on plants: diversity of herbivore assemblages revisited. Annu Rev Ecol Evol Syst 36:597–620CrossRefGoogle Scholar
  23. Lewinsohn TM, Prado PI, Jordano P, Bascompte J (2006) Structure in plant–animal interaction assemblages. Oikos 113:174–184CrossRefGoogle Scholar
  24. Lillo EL, Skoracka A (2010) What’s “cool” on eriophyoid mites? Exp Appl Acarol 51:3–30CrossRefPubMedGoogle Scholar
  25. Lindquist EE (1999) Evolution of phytophagy in trombidiform mites. Ecol Evol 55:73–88Google Scholar
  26. López-Carretero A, Díaz-Castelazo C, Boege K, Rico-Gray V (2014) Evaluating the spatio-temporal factors that structure network parameters of plant–herbivore interactions. PLoS ONE 9:e110430CrossRefPubMedCentralPubMedGoogle Scholar
  27. McMurtry JA, Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320CrossRefGoogle Scholar
  28. McMurtry JA, Sourassou NF, Demite PR (2015) The phytoseiidae (Acari: Mesostigmata) as biological control agents. In: Carrillo D, Moraes GJ, Peña EJ (eds) Prospects for biological control of plant feeding mites and other harmful organisms. Springer, New YorkGoogle Scholar
  29. Montoya D, Yallop ML, Memmott J (2015) Functional group diversity increases with modularity in complex food webs. Nat Commun 6:7379CrossRefPubMedCentralPubMedGoogle Scholar
  30. Moraes GJ, Flechtmann CHW (2008) Manual de acarologia: acarologia básica e ácaros de plantas cultivadas no Brasil. Holos, Ribeirão PretoGoogle Scholar
  31. Morais HC, Sujii ER, Almeida-Neto M, De-Carvalho PS, Hay JD, Diniz IR (2011) Host plant specialization and species turnover of caterpillars among hosts in the Brazilian Cerrado. Biotropica 43:467–472CrossRefGoogle Scholar
  32. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  33. Norton AP, English-Loeb G, Beldew E (2001) Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators. Oecologia 126:535–542CrossRefPubMedGoogle Scholar
  34. Ødegaard R, Diserud OH, Østbye K (2005) The importance of plant relatedness for host utilization among phytophagous insects. Ecol Lett 8:612–617CrossRefGoogle Scholar
  35. O’dowd DJ, Willson MF (1991) Associations between mites and leaf domatia. Trends Ecol Evol 6:179–182CrossRefPubMedGoogle Scholar
  36. Pallini A, Fadini MAM, Venzon M, Moraes GJ, Barros-Battesti DM (2007) Demandas e perspectivas para a acarologia no Brasil. Neotrop Biol Conserv 2:169–175Google Scholar
  37. Peterson JA, Ode PJ, Oliveira-Hofman C, Harwood JD (2016) Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities. Front Plant Sci 7:1–23CrossRefGoogle Scholar
  38. Piazzon M, Larrinaga AR, Santamaría L (2011) Are nested networks more robust to disturbance? A test using epiphyte-tree, comensalistic networks. PLoS ONE 6:e19637CrossRefPubMedCentralPubMedGoogle Scholar
  39. Pires MM, Guimarães JRPR (2013) Interaction intimacy organizes networks of antagonistic interactions in different ways. J R Soc Interface 10:20120649CrossRefPubMedCentralPubMedGoogle Scholar
  40. Poisot T, Stouffer DB, Kéfi S (2016) Describe, understand and predict: Why do we need networks in ecology? Funct Ecol 30:1878–1882CrossRefGoogle Scholar
  41. Price PW (2002) Resource-driven terrestrial interaction webs. Ecol Res 17:241–247CrossRefGoogle Scholar
  42. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Romero GQ, Benson WW (2004) Leaf domatia mediate mutalism between mites and tropical tree. Oecologia 140:609–616CrossRefPubMedGoogle Scholar
  44. Romero GQ, Daud RD, Salomão AT, Martins LF, Feres RJF, Bensom WW (2011) Mites and leaf domatia: no evidence of mutualism in Coffea arabica plants. Biota Neotrop 11:27–34CrossRefGoogle Scholar
  45. Santos-Mendonça IV, Almeida-Cortez J (2007) Characterization of a mite induced gall in Laguncularia racemosa (L.) Gaerten (Combretaceae). Biota Neotrop 7:163–170CrossRefGoogle Scholar
  46. Schmidt RA (2014) Leaf structure affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62:1–17CrossRefPubMedGoogle Scholar
  47. Skoracka A (2006) Host specificity of eriophyoid mites: Specialists or generalists? Biol Let 43:289–298Google Scholar
  48. Skoracka A, Smith L, Oldfield G, Cristorafo M, Amrine JW (2010) Host-plant specificity and specialization in eriophyoid mites and their importance for use of eriophyoid mites as biocontrol agents of weeds. Exp Appl Acarol 51:93–113CrossRefPubMedGoogle Scholar
  49. Walter DE, Proctor HC (2013) Mites: ecology, evolution and behavior: life at a microscale. Springer, New YorkCrossRefGoogle Scholar
  50. Zacarias MS, Moraes GJ (2002) Mite diversity (Arthropoda: Acari) on euphorbiaceous plants in three localities in the State of São Paulo. Biota Neotrop 2:1–12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Postgraduate Program in Animal Biodiversity, Institute of Biological SciencesUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Department of General Biology, Center of Biological Sciences and HealthUniversidade Estadual de Montes ClarosMontes ClarosBrazil
  3. 3.Laboratory of Acarology, Department of Ecology, Institute of Biological SciencesUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations