Experimental and Applied Acarology

, Volume 74, Issue 4, pp 403–414 | Cite as

Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae)

  • Hyun Kyung Kim
  • Seung Ju Lee
  • Bang-Yeon Hwang
  • Jong Ung Yoon
  • Gil-Hah Kim
Article
  • 27 Downloads

Abstract

The acaricidal activity of a methanolic extract and fractions from the rhizome of Cnidium officinale against Dermanyssus gallinae adults was investigated. The C. officinale methanolic extract exhibited 100% acaricidal activity after 48 h of treatment at a dose of 4000 ppm. The acaricidal constituents of the plant were sequentially partitioned with several solvents and then purified using silica gel column chromatography and high-performance liquid chromatography. Gas chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy revealed (Z)-ligustilide as a constituent of C. officinale. Acaricidal activity was examined in three experimental tests (spray, fumigation and contact), with the spraying method being the most effective. The methanolic extract of C. officinale showed both contact and fumigant activities, though only fumigant activity was observed with (Z)-ligustilide. The fumigant effects of the methanolic extract and (Z)-ligustilide caused 86.5 and 62.6% mortality, respectively, of D. gallinae adults at 48 h. Among (Z)-ligustilide, acaricides (bifenthrin, cypermethrin and spinosad) and butylidenephthalide, bifenthrin displayed the highest acaricidal activity, and the activity of butylidenephthalide was 2.3-fold higher than that of (Z)-ligustilide. These results suggest that C. officinale-derived material can be used for the development of a control agent for D. gallinae.

Keywords

Dermanyssus gallinae Cnidium officinale Acaricidal activity (Z)-ligustilide 

Notes

Acknowledgements

This project was support by Ministry of Trade, Industry and Energy (Project No. R0005538), Republic of Korea.

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Ahn YJ, Kim SI, Kim HK, Tak JH (2006) Naturally occurring house dust mites control agents: development and commercialization. In: Rai M, Carpinella MC (eds) Naturally bioactive compounds. Elsevier, London, pp 269–289CrossRefGoogle Scholar
  3. Armstrong G, Bradbury FR, Standen H (1951) The penetration of the insect cuticle by isomers of benzene hexachloride. Ann Appl Biol 38:555–566CrossRefGoogle Scholar
  4. Axtell RC, Arends JJ (1990) Ecology and management of arthropod pests of poultry. Annu Rev Entomol 35:101–126CrossRefPubMedGoogle Scholar
  5. Beck JJ, Stermitz FR (1995) Addition of methyl thioglycolate and benzylamine to (Z)-ligustilide, a bioactive unsaturated lactone constituent of several herbal medicines. An improved synthesis of (Z)-ligustilide. J Nat Prod 58:1047–1055CrossRefPubMedGoogle Scholar
  6. Bohrmann H, Stahl E, Mitsuhashi H (1967) Studies of the constituents of umbelliferae plants. XIII. Chromatographic studies on the constituents of Cnidium officinale MAKINO. Chem Pharm Bull 15:1606–1608CrossRefPubMedGoogle Scholar
  7. Campos F, Dybas RA, Krupa DA (1995) Susceptibility of two spotted spider mite (Acari: Tetranychidae) populations in California to Abamectin. J Econ Entomol 88:225–231CrossRefGoogle Scholar
  8. Chae SH, Kim SI, Yeon SH, Lee SW, Ahn YJ (2011) Adulticidal activity of phthalides identified in Cnidium officinale rhizome to B-and Q-biotypes of Bemisia tabaci. J Agric Food Chem 59:8193–8198CrossRefPubMedGoogle Scholar
  9. Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer 1778): current situation and future prospects for control. Vet Parasitol 79:239–245CrossRefPubMedGoogle Scholar
  10. Chu SS, Jiang GH, Liu ZL (2011) Insecticidal components from the essential oil of Chinese medicinal herb, Ligusticum chuanxiong Hort. J Chem 8:300–304Google Scholar
  11. Chung JW, Choi RJ, Seo EK, Nam JW, Dong MS, Shin EM, Kim YS (2012) Anti-inflammatory effects of (Z)-ligustilide through suppression of mitogen-activated protein kinases and nuclear factor-κB activation pathways. Arch Pharm Res 35:723–732CrossRefPubMedGoogle Scholar
  12. Durden LA, Linthicum KJ, Monath TP (1993) Laboratory transmission of eastern equine encephalomyelitis virus to chickens by chicken mites (Acari: Dermanyssidae). J Med Entomol 30:281–285CrossRefPubMedGoogle Scholar
  13. Fiddes MD, Le Gresley S, Parsons DG, Epe C, Coles GC, Stafford KA (2005) Prevalence of the poultry red mite (Dermanyssus gallinae) in England. Vet Rec 157:233CrossRefPubMedGoogle Scholar
  14. Freeman BM (1976) Stress and the domestic fowl: a physiological re-appraisal. Worlds Poult Sci J 32:249–256CrossRefGoogle Scholar
  15. Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem 49:715–720CrossRefPubMedGoogle Scholar
  16. Kim SI, Yi JH, Tak JH, Ahn YJ (2004) Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 120:297–304CrossRefPubMedGoogle Scholar
  17. Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145:377–382CrossRefPubMedGoogle Scholar
  18. Kim JR, Perumalsamy H, Lee JH, Ahn YJ, Lee YS, Lee SG (2016) Acaricidal activity of Asarum heterotropoides root-derived compounds and hydrodistillate constitutes toward Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Exp Appl Acarol 68:485–495CrossRefPubMedGoogle Scholar
  19. Kobayashi M, Fujita M, Mitsuhashi H (1984) Components of Cnidium officinale Makino: occurrence of pregnenolone, coniferyl ferulate, and hydroxyphthalides. Chem Pharm Bull 32:3770–3773CrossRefPubMedGoogle Scholar
  20. Kwon JH, Ahn YJ (2003) Acaricidal activity of Cnidium officinale rhizome-derived butylidenephthalide against Tyrophagus putrescentiae (Acari: Acaridae). Pest Manag Sci 59:119–123CrossRefPubMedGoogle Scholar
  21. Lancaster JL, Meisch MV (1986) Arthropods in livestock and poultry production. Ellis Horwood, Chichester, pp 299–320Google Scholar
  22. Lee SJ, Yoon JU, Park GH, Kim HK, Kim GH (2017) Evaluation of susceptibility of red poultry mite, Dermanyssus gallinae (Acari: Dermanyssidae) in Five regions to 11 acaricides. Korean J Appl Entomol 56:427–434Google Scholar
  23. Marangi M, Morelli V, Pati S, Camarda A, Cafiero MA, Giangaspero A (2012) Acaricide residues in laying hens naturally infested by red mite Dermanyssus gallinae. PLoS ONE 7:e31795CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62:366–371CrossRefPubMedGoogle Scholar
  25. Moro CV, De Luna CJ, Tod A, Guy JH, Sparagano OA, Zenner L (2009) The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Exp Appl Acarol 48:93–104CrossRefGoogle Scholar
  26. Murano T, Namiki K, Shina K, Yasukawa H (2015) Resistance developmemt of Dermanyssus gallinae against commercial acaricides in poultry farms in Japan. J Jpn Vet Med Assoc 68:509–514CrossRefGoogle Scholar
  27. Nechita IS, Poirel MT, Cozma V, Zenner L (2015) The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 214:348–352CrossRefPubMedGoogle Scholar
  28. Nordenfors H, Höglund J, Uggla A (1999) Effects of temperature and humidity on oviposition, molting, and longevity of Dermanyssus gallinae (Acari: Dermanyssidae). J Med Entomol 36:68–72CrossRefPubMedGoogle Scholar
  29. Nordenfors H, Höglund J, Tauson R, Chirico J (2001) Effect of permethrin impregnated plastic strips on Dermanyssus gallinae in loose-housing systems for laying hens. Vet Parasitol 102:121–131CrossRefPubMedGoogle Scholar
  30. Osanloo M, Amani A, Sereshti H, Shayeghi M (2017) Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (major constituent) against Anopheles stephensi. J Entomol Zool Stud 5:611–616Google Scholar
  31. Pandey SK, Upadhyay S, Tripathi AK (2009) Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res 105:507–512CrossRefPubMedGoogle Scholar
  32. Park YU, Koo HN, Kim GH (2012) Chemical composition, larvicidal action, and adult repellency of Thymus magnus against Aedes albopictus. J Am Mosq Control Assoc 28:192–198CrossRefPubMedGoogle Scholar
  33. Pitasawat B, Champakaew D, Choochote W, Jitpakdi A, Chaithong U, Kanjanapothi D, Chaiyasit D (2007) Aromatic plant-derived essential oil: an alternative larvicide for mosquito control. Fitoterapia 78:205–210CrossRefPubMedGoogle Scholar
  34. Potenza L, Cafiero MA, Camarda A, La Salandra G, Cucchiarini L, Dachà M (2009) Characterization of Dermanyssus gallinae (Acarina: Dermanissydae) by sequence analysis of the ribosomal internal transcribed spacer regions. Vet Res Commun 33:611CrossRefPubMedGoogle Scholar
  35. Raal A, Arak E, Orav A, Kailas T, Müürisepp M (2008) Composition of the essential oil of Levisticum officinale WDJ Koch from some European countries. JEOR 20:318–322CrossRefGoogle Scholar
  36. SAS Instituent (2008) SAS user’s guide; statistics, version 9.1 ed. SAS Institute, Cary, NCGoogle Scholar
  37. Shin SW, Park BM (1994) The production of essential oils by tissue culture of Cnidium officinale. Yakhak Hoeji 38:179–183Google Scholar
  38. Tsukamoto T, Ishikawa Y, Miyazawa M (2005) Larvicidal and adulticidal activity of alkylphthalide derivatives from rhizome of Cnidium officinale against Drosophila melanogaster. J Agric Food Chem 53:5549–5553CrossRefPubMedGoogle Scholar
  39. Tsukamoto T, Nakatani S, Yoshioka Y, Sakai N, Horibe I, Ishikawa Y, Miyazawa M (2006) Comparison of larvicidal, adulticidal and acaricidal activity of two geometrical butylidenephthalide isomers. Biol Pharm Bull 29:592–594CrossRefPubMedGoogle Scholar
  40. Wedge DE, Klun JA, Tabanca N, Demirci B, Ozek T, Baser KHC, Liu Z, Zhang S, Cantrell CL, Zhang J (2009) Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464–470CrossRefPubMedGoogle Scholar
  41. Yoon C, Moon SR, Jeong JW, Shin YH, Cho SR, Ahn KS, Kim GH (2011) Repellency of lavender oil and linalool against spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) and their electrophysiological responses. J Asia Pac Entomol 14:411–416CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hyun Kyung Kim
    • 1
  • Seung Ju Lee
    • 1
  • Bang-Yeon Hwang
    • 2
  • Jong Ung Yoon
    • 3
  • Gil-Hah Kim
    • 1
  1. 1.Department of Plant MedicineChungbuk National UniversityCheongjuKorea
  2. 2.College of PharmacyChungbuk National UniversityCheongju-siKorea
  3. 3.Biogenoci Co., Ltd.Suwon-siKorea

Personalised recommendations