Experimental and Applied Acarology

, Volume 74, Issue 4, pp 383–394 | Cite as

Effect of temperature on development and reproduction of the carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychiae), fed on cassava leaves

  • Zhiwen Zou
  • Jianfei Xi
  • Ge Liu
  • Shuxian Song
  • Tianrong Xin
  • Bin Xia


The effect of five constant temperatures (16, 20, 24, 28 and 32 °C) on the development, survival and reproduction of Tetranychus cinnabarinus (Boisduval) [= Tetranychus urticae Koch (red form)] fed on cassava leaves was examined in the laboratory at 85% relative humidity. Development time of various immature stages decreased with increasing temperature, with total egg-to-adult development time varying from 27.7 to 6.7 days. The lower thermal threshold for development was 10.8 °C and the thermal constant from egg to adult was 142.4 degree-days. Pre- and post-oviposition period and female longevity all decreased as temperature increased. The longest oviposition period was observed at 20 °C with 20.4 days. Under different temperatures, mated females laid, on average, 1.0, 2.9, 4.7, 4.7 and 4.9 eggs per day, respectively. The maximum fecundity (81.5 eggs per female) was at 28 °C and the intrinsic rate of increase (r m ) was highest (0.25) at 32 °C. The results of this study indicate that T. cinnabarinus population could increase rapidly when cassava leaves serve as a food source. At the appropriate temperature T. cinnabarinus could seriously threaten growth of cassava.


Temperature Tetranychus urticae Development Demographic parameter Cassava 



The research was funded by the National Foundation of Nature Science of Jiangxi Province (Grant Nos. 20151BAB204016, 20161BBF60066, 20161ACB20003 and 20172BCB22004), the National Natural Science Foundation of China (grant nos. 31460553 and 31760621) and Foundation from the Administration of Science and Technology in Nanchang City (Grant No. 2013HZCG008), Fund from Education Department of Jiangxi Province (Grant No. KJLD14014). We would like to thank Douglas S. Richmond (Purdue University, USA) for his support and comments on our writing.

Supplementary material

10493_2018_241_MOESM1_ESM.jpg (431 kb)
Figure S1 The relationship between temperatures and development periods of Tetranychus cinnabarinus (A) egg; (B)larva; (C) protonymph; (D) deutonymph; (E) immature; (F) preoviposition; (G) oviposition; (H) post-oviposition; (I) longevity. (JPEG 431 kb)


  1. Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, ChicagoGoogle Scholar
  2. Auger P, Migeon A, Ueckermann EA, Tiedt L, Navarro MN (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): review and new data. Acarologia 53(4):383–415CrossRefGoogle Scholar
  3. Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88CrossRefGoogle Scholar
  4. Bellotti AC (2008) Cassava pests and their management. In: Capinera JL (ed) Encyclopedia of entomology, 2nd edn. Springer, DordrechtGoogle Scholar
  5. Biswas GC (2004) Some biological aspects of carmine spider mite, Tetranychus cinnabarinus Boisd. (Acari: Tetranychidae) infesting egg-plant from Rajshahi [Bangladesh]. J Biol Sci (Pakistan)Google Scholar
  6. Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart RS, Setter TL, Gleadow RM, Kulakow P, Ferguson ME, Rounsley S, Rokhsar DS (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34(5):562–570PubMedCrossRefGoogle Scholar
  7. Campbell A, Franzer BD, Gilbert N, Gutierrez AP, McKauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438CrossRefGoogle Scholar
  8. Chen W, Wu F, Zhang J (2016) Potential production of non-food biofuels in China. Renew Energy 85:939–944CrossRefGoogle Scholar
  9. Cu CD, Li H, Hong B, He DH, Xia XL, Ren XY (1994) Establishment and analysis of life table for experimental population of Tetranychus cinnabarinus in Ningxia. J Ningxia Agric Coll 15(2):26–31Google Scholar
  10. Fu YG, Lin YM, Zhang JH (1994) Characteristics of laboratory population of Tetranychus cinnabarinus (Boiduval). Chin J Trop Crops 15(1):103–107Google Scholar
  11. Gao P, Zhou YS, Zhao YW (2012) Effect of temperature on the population growth of Tetranychus cinnabarinus in laboratory. North Hortic 11:147–149Google Scholar
  12. Gotoh T, Sugimoto N, Pallini A, Knapp M, Hernandez-Suarez E, Ferragut F, Ho CC, Migeon A, Navajas M, Nachman G (2010) Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp Appl Acarol 52:239–259PubMedCrossRefGoogle Scholar
  13. Hazan A, Gerson U, Tahori AS (1974) Life history and life tables of the carmine spider mite. Acarol 15(3):414–440Google Scholar
  14. He L, Zhao ZM, Cao XF, Deng XP, Wang JJ (2005) Effect of temperature on development and fecundity of resistant Tetranychus cinnabarinus (Boiduval). Acta Entomol Sinica 48(2):203–207Google Scholar
  15. Howeler R, Lutaladio N, Thomas G (2013) Save and Grow: Cassava—a guide to sustainable production intensification. FAO-UN, RomeGoogle Scholar
  16. Kazak C, Kibritci C (2008) Population parameters of Tetranychus cinnabarinus Boisduval (Prostigmata: Tetranychidae) on eight strawberry cultivars. Turk J Agric For 32(1):19–27Google Scholar
  17. Liu XC, Wu KM (1988) The influences of different host plant to development and reproduction of carmine spider mite Tetranychus cinnabarinus. Acta Agric Boreali-Sinica 3(4):86–91Google Scholar
  18. Luo YJ, Yang ZG, Xie DY, Ding W, Da AS, Ni J, Chai JP, Huang P, Jiang XJ, Li SX (2014) Molecular cloning and expression of glutathione S-transferases involved in propargite resistance of the carmine spider mite, Tetranychus cinnabarinus (Boisduval). Pestic Biochem Physiol 114:44–51PubMedCrossRefGoogle Scholar
  19. Maula F, Khan IA (2016) Effect of temperature variation on the developmental stages of Tetranychus urticae Koch and Panonychus ulmi Koch (Tetranychidae: Acarina) under laboratory conditions in Swat valley of Khyber Pakhtunkhwa, Pakistan. J Entomol Zool Stud 4(1):279–283Google Scholar
  20. McMurtry JA, Scriven GT (1964) Studies on the feeding, reproduction and development of Amblyseius hibisci (Acarina: Phytoseiidae) on various food substances. Ann Entomol Soc Am 57:649–655CrossRefGoogle Scholar
  21. Mou DF, Lee CC, Smith CL, Chi H (2015) Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiata (Coleoptera: Coccinellidae). J Appl Entomol 139(8):579–591CrossRefGoogle Scholar
  22. Northcraft PD, Watson TF (1987) Developmental biology of Tetranychus cinnabarinus (Boisduval) under three temperature regimes. Southwest Entomol 12(1):45–50Google Scholar
  23. Pan WQ, Li HY, Yan WH, Li ZG, Wei YC, Huang J (2011) Outbreak regularity of cassava Tetranychus cinnabarinus in Wuming county. Chinese J Trop Agric 31(8):34–38Google Scholar
  24. Peng ZR, Song SX, Zhong L, Song JH, Wang J, Xia B (2014) Population dynamic and spatial distribution type of Tetranychus cinnabarinus damaged Manihot esculenta Crantz. J Nanchang Univ (Nat Sci) 38(5):488–491Google Scholar
  25. Peralta CO, Tello MV (2011) Life tables of Tetranychus cinnabarinus (Acari: Tetranychidae) on three varieties of muskmelon, Cucumis melo. Rev Colomb Entomol 37(1):21–26Google Scholar
  26. Poubom CFN, Awah ET, Tchuanyo M, Tengoua F (2005) Farmers’ perceptions of cassava pests and indigenous control methods in Cameroon. Int J Pest Manag 51:157–164CrossRefGoogle Scholar
  27. Riahi E, Shishehbor P, Nemati AR, Saeidi Z (2013) Temperature effects on development and life table parameters of Tetranychus urticae (Acari: Tetranychidae). J Agric Sci Technol 15(4):661–672Google Scholar
  28. Roy M, Brodeur J, Cloutier C (2003) Temperature and sex allocation in a spider mite. Oecologia 135:322–326PubMedCrossRefGoogle Scholar
  29. Sahraoui H, Grissa KL (2006) Demographic traits of two phytophagous mites (Tetranychus cinnabarinus and Aculops lycopersici) and biological control on tomato. In: X international symposium on the processing tomato, vol 758, pp 81–88Google Scholar
  30. Shen GM, Song CG, Aoyang QY, Xiao YH, Zhang YJ, Pan Y, He L (2016) Transgenic cotton expressing CYP392A4 double-stranded RNA decreases the reproductive ability of Tetranychus cinnabarinus. Insect Sci 24:559–568PubMedCrossRefGoogle Scholar
  31. Song SX, Liu GH, Xin TR, Zou ZW, Xia B (2012) Predation of Neoseiulus barkeri on Tetranychus cinnabarinus. J Nanchang Univ (Nat Sci) 36(5):486–489Google Scholar
  32. Southwood TRE (1978) Ecological methods, with particular reference to the study of insect populations. Chapman and Hall, LondonGoogle Scholar
  33. Tang YX, Long SZ, Qi DM, Zhao H, Zhou KY (1994) Study on the development threshold temperature and effective accumulated temperature of Tetranychus cinnabarinus (Boiduval). Acta Sericol Sinica 20(4):241–242Google Scholar
  34. Tao SQ, Wu FA, Yu MD (2005) Analysis of laboratory population life table of Carmine spider mite (Tetranychus cinnabarinus) infesting Feng chi sang Morus L. Acta Arachnol Sinica 14(1):33–36Google Scholar
  35. Tello MV, Vargas MR, Araya CJ (2009) Life history parameters of Tetranychus cinnabarinus (Acari: Tetranychidae) on leaves of carnation, Dianthus caryophyllus. Rev Colomb Entomol 35(1):47–51Google Scholar
  36. Wang XK, Wu FA, Tao SQ, Wang W, Cheng JL (2008) Effects of temperature on population of Carmine spider mite (Tetranychus cinnabarinus) fed with White mulberry (Morus alba). Acta Ecol Sinica 28(6):2645–2653Google Scholar
  37. Wu QH, Zhong J, Xu YM (1988) Combined effects of temperature and light on the experimental population of the carmine mite, Tetranychus cinnabarinus (Acarina: Tetranychidae). Acta Ecol Sinica 8(1):66–77Google Scholar
  38. Wu FA, Zhou JX, Yu MD, Wang QL, Xu L, Lu C, Jing CJ (2006) Statistical inference on the intrinsic rate of increase of the carmine spider mite, Tetranychus cinnabarinus on different mulberry cultivars (Morus L.) under laboratory conditions. Acta Entomol Sinica 49(2):287–294Google Scholar
  39. Xia B, Zou ZW, Li PX, Lin P (2012) Effect of temperature on development and reproduction of Neoseiulus barkeri (Acari: Phytoseiidae) fed on Aleuroglyphus ovatus. Exp Appl Acarol 56:33–41PubMedCrossRefGoogle Scholar
  40. Yaninek JS, Gutierrez AP, Herren HR (1989) Dynamics of Mononychellus tanajoa (Acari: Tetranychidae) in Africa: experimental evidence of temperature and host plant effects on population growth rate. Environ Entomol 18(4):633–640CrossRefGoogle Scholar
  41. Zannou ID, Hanna R, de Moraes GJ, Kreiter S, Phiri G, Jone A (2005) Mites of cassava (Manihot esculenta Crantz) habitats in Southern. Int J Acarol 31(2):149–164CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life SciencesNanchang UniversityNanchangChina

Personalised recommendations