Experimental and Applied Acarology

, Volume 74, Issue 4, pp 365–381 | Cite as

Antixenosis and antibiosis response of common bean (Phaseolus vulgaris) to two-spotted spider mite (Tetranychus urticae)

  • Marie Shoorooei
  • Abdul Hadi Hoseinzadeh
  • Reza Maali-Amiri
  • Hossein Allahyari
  • Masoud Torkzadeh-Mahani
Article
  • 100 Downloads

Abstract

The two-spotted spider mite, Tetranychus uticae Koch (Acari: Tetranychidae), is globally one of the most devastating pests that feed on numerous crops, including common bean (Phaseolus vulgaris L.). This study was aimed to evaluate the effects of genotype and morphological attributes of common bean on T. uticae. Forty common bean accessions were used to investigate antixenosis and antibiosis through assessing mite feeding preference and reproduction under laboratory conditions. Three resistant (i.e., 56, 63, 238) and two susceptible (i.e., 182, 236) accessions, along with cultivars Naz (resistant) and Akhtar (susceptible), were used in a life-table study. Both antixenosis and antibiosis mechanism were observed in all of the accessions, albeit a negative correlation occurred. Significant differences were observed for all traits of T. urticae: developmental time of immature stages, reproduction, adult longevity and life-table parameters. Based on the intrinsic rate of increase, the accessions 56, 63, 182, 238, and cv. Naz impose high antibiotic effects on T. urticae. Although significant variation existed among accessions for morphological factors, only glandular trichomes correlated with mite fecundity and feeding preference.

Keywords

Antixenosis Antibiosis Tetranychus urticae Common bean Structural defense 

Notes

Acknowledgements

The authors thank the National Plant Gene Bank (Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran) for providing common bean germplasm, and the Pulse Crop Excellency Center for allocating part of the budget. We also appreciate Mr. Dashtaki in Gene Bank Laboratory for his sincere contributions.

References

  1. Baier J, Resende J, Faria M, Schwarz K, Meert L (2015) Indirect selection of industrial tomato genotypes that are resistant to spider mites (Tetranychus urticae). Genet Mol Res 14:244–252CrossRefPubMedGoogle Scholar
  2. Baldin ELL, Beneduzzi RA (2010) Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. J Pest Sci 83:223–229CrossRefGoogle Scholar
  3. Baldin EL, Lara FM (2008) Resistance of stored bean varieties to Acanthoscelides obtectus (Coleoptera: Bruchidae). Insect Sci 15:317–326CrossRefGoogle Scholar
  4. Bernal JS, Sétamou M (2003) Fortuitous antixenosis in transgenic sugarcane: antibiosis-expressing cultivar is refractory to ovipositing herbivore pests. Environ Entomol 32:886–894CrossRefGoogle Scholar
  5. Bleeker PM et al (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci USA 109:20124–20129CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boubou A, Migeon A, Roderick GK, Auger P, Cornuet J-M, Magalhães S, Navajas M (2012) Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite Tetranychus evansi. PLoS ONE 7:e35601CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24:225–240Google Scholar
  8. Cullen R, Warner KD, Jonsson M, Wratten SD (2008) Economics and adoption of conservation biological control. Biol Control 45:272–280CrossRefGoogle Scholar
  9. Cunningham JP, Zalucki MP (2014) Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? J Econ Entomol 107:881–896CrossRefPubMedGoogle Scholar
  10. De Azevedo SM, Faria MV, Maluf WR, De Oliveira ACB, de Freitas JA (2003) Zingiberene-mediated resistance to the South American tomato pinworm derived from Lycopersicon hirsutum var. hirsutum. Euphytica 134:347–351CrossRefGoogle Scholar
  11. De Lima PF, Colombo CA, Chiorato AF, Yamaguchi LF, Kato MJ, SrAM Carbonell (2014) Occurrence of isoflavonoids in Brazilian common bean germplasm (Phaseolus vulgaris L.). J Agric Food Chem 62:9699–9704CrossRefPubMedGoogle Scholar
  12. Dhillon M, Sharma H, Singh R, Naresh J (2005) Mechanisms of resistance to shoot fly, Atherigona soccata in sorghum. Euphytica 144:301–312CrossRefGoogle Scholar
  13. Dixit S, Upadhyay SK, Singh H, Sidhu OP, Verma PC, Chandrashekar K (2013) Enhanced methanol production in plants provides broad spectrum insect resistance. PLoS ONE 8:e79664CrossRefPubMedPubMedCentralGoogle Scholar
  14. FAOSTAT F (2015) Statistics Division. 2013 Statistical database RomeGoogle Scholar
  15. Fernandez AA, Hance T, Clotuche G, Mailleux A-C, Deneubourg JL (2012) Testing for collective choices in the two-spotted spider mite. Exp Appl Acarol 58:11–22CrossRefGoogle Scholar
  16. Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533CrossRefPubMedGoogle Scholar
  17. Frelichowski JE Jr, Juvik JA (2001) Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 94:1249–1259CrossRefPubMedGoogle Scholar
  18. Grbić M et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492CrossRefPubMedPubMedCentralGoogle Scholar
  19. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504CrossRefPubMedGoogle Scholar
  20. Júnior ALB, Costa EN, De Souza BHS, Ribeiro ZA, Carbonell SAM (2015a) Antixenosis and tolerance to Diabrotica speciosa (Coleoptera: Chrysomelidae) in common bean cultivars. Fla Entomol 98:464–472CrossRefGoogle Scholar
  21. Júnior ALB, De Souza BHS, Costa EN, Ribeiro ZA, Stout MJ (2015b) Factors influencing expression of antixenosis in soybean to Anticarsia gemmatalis and Spodoptera frugiperda (Lepidoptera: Noctuidae). J Econ Entomol 108:317–325CrossRefGoogle Scholar
  22. Kant M et al (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot 115:1015–1051CrossRefPubMedPubMedCentralGoogle Scholar
  23. Keskin N, Kumral NA (2015) Screening tomato varietal resistance against the two-spotted spider mite [Tetranychus urticae (Koch)]. Int J Acarol 41:300–309CrossRefGoogle Scholar
  24. Khanjani M, Haddad Irani-Nejad K (2006) Injurious mites of agricultural crops in Iran. Bu-Ali Sina University of Hamadan Press, HamadanGoogle Scholar
  25. Lucini T, Faria MV, Rohde C, Resende JTV, de Oliveira JRF (2015) Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod Plant Interact 9:45–53CrossRefGoogle Scholar
  26. Maluf WR, Campos GA, Das Graças Cardoso M (2001) Relationships between trichome types and spider mite (Tetranychus evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica 121:73–80CrossRefGoogle Scholar
  27. Martel C et al (2015) Tomato whole genome transcriptional response to Tetranychus urticae identifies divergence of spider mite-induced responses between tomato and Arabidopsis. Mol Plant Microbe Interact 28:343–361CrossRefPubMedGoogle Scholar
  28. Meier U (1997) Growth stages of mono-and dicotyledonous plants. Blackwell Wissenschafts-VerlagGoogle Scholar
  29. Migeon A, Nouguier E, Dorkeld F (2011) Spider Mites Web: a comprehensive database for the Tetranychidae. In: Sabelis MW, Bruin J (eds) Trends in acarology. Springer, Dordrecht, pp 557–560Google Scholar
  30. Nair S, Braman SK, Knauft D (2012) Resistance Mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae). Environ Entomol 41:1153–1162CrossRefPubMedGoogle Scholar
  31. Najafabadi SM, Shoushtari RV, Zamani A, Arbabi M, Farazmand H (2014) Life parameters of Tetranychus urticae (Acari: Tetranychidae) on six common bean cultivars. J Econ Entomol 107:614–622CrossRefPubMedGoogle Scholar
  32. Norton AP, English-Loeb G, Belden E (2001) Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators. Oecologia 126:535–542CrossRefPubMedGoogle Scholar
  33. Oriani MAG, Vendramim JD, Brunherotto R (2005) Influência dos trichomas na preferência para oviposicão de bemisia tabaci (Genn.) biótipo (Hemiptera: Aleyrodidae) em genótipos de feijoeiro. Neotropical Entomology 34:97–103CrossRefGoogle Scholar
  34. Perdikis D, Kapaxidi E, Papadoulis G (2008) Biological control of insect and mite pests in greenhouse solanaceous crops. Eur J Plant Sci Biotechnol 2:125–144Google Scholar
  35. Piraneo TG, Bull J, Morales MA, Lavine LC, Walsh DB, Zhu F (2015) Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields. Sci Rep 5:17090CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rakha M, Bouba N, Ramasamy S, Regnard J-L, Hanson P (2016) Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet Resour Crop Evolut 64:1011–1022CrossRefGoogle Scholar
  37. Razmjou J, Tavakkoli H, Fallahi A (2009) Effect of soybean cultivar on life history parameters of Tetranychus urticae Koch (Acari: Tetranychidae). J Pest Sci 82:89–94CrossRefGoogle Scholar
  38. Reddy GV, Chi H (2015) Demographic comparison of sweetpotato weevil reared on a major host, Ipomoea batatas, and an alternative host, I. triloba. Sci Rep 5:11871CrossRefPubMedPubMedCentralGoogle Scholar
  39. Saei Dehghan M, Allahyari H, Saboori A, Nowzari J, Hosseini Naveh V (2009) Fitness of Tetranychus urticae Koch (Acari: Tetranychidae) on different soybean cultivars: biology and fertility life-tables. Int J Acarol 35:341–347CrossRefGoogle Scholar
  40. Santamaria ME, Arnaiz A, Diaz-Mendoza M, Martinez M, Diaz I (2015) Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding. PLoS ONE 10:e0128323CrossRefPubMedPubMedCentralGoogle Scholar
  41. Scully BT, East DA, Edelson JV, Cox EL (1991) Resistance to the two-spotted spider mite in muskmelon. In: Florida State Horticultural Society, pp 276–278Google Scholar
  42. Sedaratian A, Fathipour Y, Moharramipour S (2009) Evaluation of resistance in 14 soybean genotypes to Tetranychus urticae (Acari: Tetranychidae). J Pest Sci 82:163–170CrossRefGoogle Scholar
  43. Seki K (2016) Leaf-morphology-assisted selection for resistance to two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in carnations (Dianthus caryophyllus L). Pest Manag Sci 72:1926–1933CrossRefPubMedGoogle Scholar
  44. Shoorooei M et al (2013) Antixenosis and antibiosis of some melon (Cucumis melo) genotypes to the two-spotted spider mite (Tetranychus urticae) and a possible mechanism for resistance. J Hortic Sci Biotechnol 88:73–78CrossRefGoogle Scholar
  45. Simmonds MS (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30CrossRefPubMedGoogle Scholar
  46. Skorupska A (2004) Resistance of apple cultivars to two-spotted spider mite, Tetranychus urticae Koch (Acarina, Tetranychidae) Part 1. Bionomy of two-spotted spider mite on selected cultivars of apple trees. J Plant Prot Res 44:75–80Google Scholar
  47. Smith CM (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer Science & Business MediaGoogle Scholar
  48. Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328CrossRefPubMedGoogle Scholar
  49. Steinite I, Ievinsh G (2003) Possible role of trichomes in resistance of strawberry cultivars against spider mite. Acta Univ Latviensis 662:59–65Google Scholar
  50. Stenglein SA, Arambarri AM, Vizgarra ON, Balatti PA (2004) Micromorphological variability of leaf epidermis in Mesoamerican common bean (Phaseolus vulgaris, Leguminosae). Aust J Bot 52:73–80CrossRefGoogle Scholar
  51. Stenglein SA, Arambarri AM, Sevillano MdCM, Balatti PA (2005) Leaf epidermal characters related with plant’s passive resistance to pathogens vary among accessions of wild beans Phaseolus vulgaris var. aborigineus (Leguminosae–Phaseoleae). Flora Morphol Distrib Funct Ecol Plants 200:285–295CrossRefGoogle Scholar
  52. Stumpf N, Nauen R (2001) Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583CrossRefPubMedGoogle Scholar
  53. Suzuki K, Ishimoto M, Kikuchi F, Kitamura K (1993) Growth inhibitory effect of an α-amylase inhibitor from the wild common bean [Phaseolus vulgaris] resistant to the Mexican bean weevil (Zabrotes subfasciatus). Jpn J Breed 43:257–265CrossRefGoogle Scholar
  54. Szyndler MW, Haynes KF, Potter MF, Corn RM, Loudon C (2013) Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces. J R Soc Interface 10:20130174CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tahmasebi Z, Mohammadi H, Arimura G-I, Muroi A, Kant MR (2014) Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. Exp Appl Acarol 63:217–239CrossRefPubMedGoogle Scholar
  56. Taiz L, Zeiger E (2006) Plant physiology 4th Sinauer Associate Sunderland Mass EUAGoogle Scholar
  57. van den Boom C, van Beek T, Dicke M (2003) Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch. J Appl Entomol 127:177–183CrossRefGoogle Scholar
  58. van den Boom CE, van Beek TA, Posthumus MA, de Groot A, Dicke M (2004) Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J Chem Ecol 30:69–89CrossRefPubMedGoogle Scholar
  59. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572CrossRefPubMedGoogle Scholar
  60. Voigt D, Gorb S (2008) An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. J Exp Biol 211:2647–2657CrossRefPubMedGoogle Scholar
  61. Yano S, Wakabayashi M, Takabayashi J, Takafuji A (1998) Factors determining the host plant range of the phytophagous mite, Tetranychus urticae (Acari: Tetranychidae): a method for quantifying host plant acceptance. Exp Appl Acarol 22:595–601CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agronomy and Plant Breeding, Faculty of AgricultureUniversity of TehranKarajIran
  2. 2.Department of Plant Protection, Faculty of AgricultureUniversity of TehranKarajIran
  3. 3.Department of Biotechnology, Institute of Science, High Technology and Environmental ScienceGraduate University of Advanced TechnologyKermanIran

Personalised recommendations