Skip to main content

Advertisement

Log in

Molecular survey of Coxiella burnetii in wildlife and ticks at wildlife–livestock interfaces in Kenya

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Coxiella burnetii is the causative agent of Q fever, a zoonotic disease of public health importance. The role of wildlife and their ticks in the epidemiology of C. burnetii in Kenya is unknown. This study analysed the occurrence and prevalence of the pathogen in wildlife and their ticks at two unique wildlife–livestock interfaces of Laikipia and Maasai Mara National Reserve (MMNR) with the aim to determine the potential risk of transmission to livestock and humans. Blood from 79 and 73 animals in Laikipia and MMNR, respectively, and 756 and 95 ixodid ticks in each of the areas, respectively, was analysed. Ticks were pooled before analyses into 137 and 29 samples in Laikipia and MMNR, respectively, of one to eight non-engorged ticks according to species and animal host. Real-time PCR amplifying the repetitive insertion element IS1111a of the transposase gene was used to detect C. burnetii DNA. Although none of the animals and ticks from MMNR tested positive, ticks from Laikipia had an overall pooled prevalence of 2.92% resulting in a maximum-likelihood estimate of prevalence of 0.54%, 95% CI 0.17–1.24. Ticks positive for C. burnetii DNA belonged to the genus Rhipicephalus at a pooled prevalence of 2.96% (maximum-likelihood estimate of prevalence of 0.54%, 95% CI 0.17–1.26). These ticks were Rhipicephalus appendiculatus, R. pulchellus and R. evertsi at pooled prevalence of 3.77, 3.03 and 2.04%, respectively. The presence of C. burnetii in ticks suggests circulation of the pathogen in Laikipia and demonstrates they may play a potential role in the epidemiology of Q fever in this ecosystem. The findings warrant further studies to understand the presence of C. burnetii in domestic animals and their ticks within both study areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aktas M (2014) A survey of ixodid tick species and molecular identification of tick-borne pathogens. Vet Parasitol 200(3–4):276–283

    Article  CAS  PubMed  Google Scholar 

  • Al-Soud WA, Jonsson LJ, Radstrom P (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38(1):345–350. doi:10.1016/j.vetpar.2013.12.008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ari MD, Guracha A, Fadeel MA, Njuguna C, Njenga MK, Kalani R, Abdi H, Warfu O, Omballa V, Tetteh C, Breiman RF, Pimentel G, Feikin DR (2011) Challenges of establishing the correct diagnosis of outbreaks of acute febrile illnesses in Africa: the case of a likely Brucella outbreak among nomadic pastoralists, northeast Kenya, March–July 2005. Am J Trop Med Hyg 85(5):909–912. doi:10.4269/ajtmh.2011.11-0030

    Article  PubMed  PubMed Central  Google Scholar 

  • Barandika JF, Hurtado A, Garcia-Esteban C, Gil H, Escudero R, Barral M, Jado I, Juste RA, Anda P, Garcia-Perez AL (2007) Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl Environ Microbiol 73(19):6166–6171. doi:10.1128/AEM.00590-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barghash SM, Hafez AA, Darwish AM, El-Naga TRA (2016) Molecular detection of pathogens in ticks infesting camels in Matrouh Governorate, Egypt. J Bacteriol Parasitol 7:259. doi:10.4172/2155-9597.1000269

    Article  Google Scholar 

  • Brah S, Daou M, Salissou L, Mahaman SA, Alhousseini D, Amelie IB, Moussa S, Malam-Abdou B, Adamou H, Adehossi E (2015) Fever of unknown origin in Africa: the causes are often determined. Health Sci Dis 16(2). http://www.hsd-fmsb.org/. Accessed 22 Mar 2016

  • Cameron AR (1999) Survey toolbox for livestock diseases: a practical manual and software package for active surveillance of livestock diseases in developing countries. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Cowling DW, Gardner IA, Johnson WO (1999) Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev Vet Med 39:211–225

    Article  CAS  PubMed  Google Scholar 

  • DePuy W, Benka V, Massey A, Deem SL, Kinnaird M, O’Brien T, Wanyoike S, Njoka J, Butt B, Foufopoulos J, Eisenberg JNS, Hardin R (2014) Short communication: Q fever risk across a dynamic, heterogeneous landscape in Laikipia County, Kenya. EcoHealth. doi:10.1007/s10393-014-0924-0

    PubMed  Google Scholar 

  • Fournier PE, Raoult D (2003) Comparison of PCR and serology assays for early diagnosis of acute Q fever. J Clin Microbiol 41(11):5094–5098. doi:10.1128/JCM.41.11.5094-5098.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardon J, Heraud JM, Laventure S, Ladam A, Capot P, Fouquet E, Favre J, Weber S, Hommel D, Hulin A, Couratte Y, Talarmin A (2001) Suburban transmission of Q fever in French Guiana: evidence of a wild reservoir. J Infect Dis 184:278–284. doi:10.1086/322034

    Article  CAS  PubMed  Google Scholar 

  • Jones RM, Nicas M, Hubbard AE, Reingold AL (2006) The infectious dose of Coxiella burnetii (Q fever). Appl Biosaf 11(1):32–41. doi:10.1177/153567600601100106

    Article  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. doi:10.1038/nature06536

    Article  CAS  PubMed  Google Scholar 

  • Kamani J, Baneth G, Mumcuoglu KY, Waziri NE, Eyal O, Guthmann Y, Harrus S (2013) Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl Trop Dis 7(3):e2108. doi:10.1371/journal.pntd.0002108

    Article  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Keesing F, Allan BF, Young TP, Ostfeld RS (2013) Effects of wildlife and cattle on tick abundance in central Kenya. Ecol Appl 23(6):1410–1418. doi:10.1890/12-1607.1

    Article  PubMed  Google Scholar 

  • Kersh GJ, Lambourn DM, Raverty SA, Fitzpatrick KA, Self JS, Akmajian AM, Jeffries SJ, Huggins J, Drew CP, Zaki SR, Massung RF (2012) Coxiella burnetii infection of marine mammals in the pacific northwest, 1997–2010. J Wildl Dis 48(1):201–206. doi:10.7589/0090-3558-48.1.201

    Article  PubMed  Google Scholar 

  • Kirkan F, Kaya O, Tekbiyik S, Parin U (2008) Detection of Coxiella burnetii in cattle by PCR. Turk J Vet Anim Sci 32(3):215–220

    CAS  Google Scholar 

  • Knobel DL, Maina AN, Cutler SJ, Ogola E, Feikin DR, Junghae M, Halliday JE, Richards AL, Breiman RF, Cleaveland S, Njenga MK (2013) Coxiella burnetii in humans, domestic ruminants and ticks in rural western Kenya. Am J Trop Med Hyg 88:513–518. doi:10.4269/ajtmh.12-0169

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumsa B, Socolovschi C, Almeras L, Raoult D, Parola P (2015) occurrence and genotyping of Coxiella burnetii in ixodid ticks in Oromia, Ethiopia. Am J Trop Med Hyg 93(5):1074–1081. doi:10.4269/ajtmh.14-0758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrie TJ (2009) Q fever. In: Brachman PS, Elias A (eds) Bacterial infections of humans: epidemiology and control, 4th edn. Springer, New York, pp 643–660. doi:10.1007/978-0-387-09843-2_30

    Chapter  Google Scholar 

  • Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12 (4): 518–553. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC88923/

  • McKenzie AA (1993) The capture and care manual: capture, care, accommodation and transportation of wild African animals. South African Veterinary Foundation, Pretoria

    Google Scholar 

  • McQuiston JH, Childs JE, Thompson HA (2002) Zoonosis update- Q fever. J Am Vet Med Assoc 221(6):796–799

    Article  PubMed  Google Scholar 

  • Mediannikov O, Fenolla F, Socoloschi C, Diatta G, Bassene H, Molez F, Sokhna C, Trape JF, Raoult D (2010) Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl Trop Dis 4(4):e654. doi:10.1371/journal.pntd.0000654

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter SR, Czaplicki G, Mainil J, Guatteo R, Saegerman C (2011) Q fever: current state of knowledge and perspectives of research of a neglected zoonosis. Int J Microbiol. doi:10.1155/2011/248418

    PubMed  PubMed Central  Google Scholar 

  • Potasman I, Rzotkiewicz S, Pick N, Keysary A (2000) Outbreak of Q fever following a safari trip. Clin Infect Dis 30:214–215

    Article  CAS  PubMed  Google Scholar 

  • Reid RS, Rainy M, Ogutu J, Kruska RL, McCartney M, Nyabenge M, Kimani K, Kshatriy M, Worden J, Nganga L, Owuor J, Kinoti J, Njuguna E, Wilson CJ, Lamprey R (2003) People, wildlife and livestock in the Mara ecosystem: The Mara count 2002 report. International Livestock Research Institute, Nairobi

    Google Scholar 

  • Roest HIJ, Ruuls RC, Tilburg JJHC, Nabuurs-Franssen MH, Klaassen CHW, Vellema P, van den Brom R, Dercksen D, Wouda W, Spierenburg MAH, van der Spek AN, Buijs R (2011) molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. Emerg Infect Dis 17(4):668–675. doi:10.3201/eid1704.101562

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneeberger PM, Hermans MHA, van Hannen EJ, Schellekens JJA, Leenders ACAP, Wever PC (2010) Real-time PCR with serum samples is indispensable for early diagnosis of acute Q fever. Clin Vaccine Immunol 17(2):286–290. doi:10.1128/CVI.00454-09

    Article  CAS  PubMed  Google Scholar 

  • Speybroeck N, Williams CJ, Lafia KB, Devleesschauwer B, Berkvens D (2012) Estimating the prevalence of infections in vector populations using pools of samples. Med Vet Entomol 26:361–371. doi:10.1111/j.1365-2915.2012.01015.x

    Article  CAS  PubMed  Google Scholar 

  • Tokarz R, Kapoor V, Samuel JE, Bouyer DH, Briese T, Lipkin WI (2009) Detection of tick-borne pathogens by masstag polymerase chain reaction. Vector Borne Zoonotic Dis 9(2):147–151. doi:10.1089/vbz.2008.0088

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderburg S, Rubach MP, Halliday JEB, Cleaveland S, Reddy EA, Crump JA (2014) Epidemiology of Coxiella burnetii infection in Africa: a one health systematic review. PLoS Negl Trop Dis 8(4):e2787. doi:10.1371/journal.pntd.0002787

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Bouattour A, Camicas JL, Estrada-Pena A, Horak IG, Latif AA, Pegram RG, Preston PM (2003) Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, Edinburgh, Scotland

  • Wambuguh O (2007) Interactions between humans and wildlife: landowner experiences regarding wildlife damage, ownership and benefits in Laikipia District, Kenya. Conservat Soc 5(3):408–428

    Google Scholar 

  • Wambwa E (2003) Diseases of importance at the wildlife/livestock interface in Kenya. In: Osofsky SA (ed) Conservation and development interventions at the wildlife/livestock interface- implications for wildlife, livestock and human health. Proceedings of the Southern and East African experts panel on designing successful conservation and development interventions at the wildlife/livestock interface: Implications for wildlife, livestock and human health, AHEAD (Animal Health for the Environment And Development) forum, IUCN Vth World Parks Congress, Durban, South Africa, pp 21–25

  • Wardrop NA, Thomas LF, Cook EAJ, de Glanville WA, Atkinson PM, Wamae CN, Fevre EM (2016) The Sero-epidemiology of Coxiella burnetii in humans and cattle, western Kenya: evidence from a cross-sectional study. PLoS Negl Trop Dis 10(10):e0005032. doi:10.1371/journal.pntd.0005032

    Article  PubMed  PubMed Central  Google Scholar 

  • Wielders CCH, Wijnbergen PCA, Renders NHM, Schellekens JJA, Schneeberger PM, Wever PC, Hermans MHA (2013) High Coxiella burnetii DNA load in serum during acute Q fever is associated with progression to a serologic profile indicative of chronic Q fever. J Clin Microbiol 51(10):3192–3198. doi:10.1128/JCM.00993-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CJ, Moffitt CM (2001) A critique of methods of sampling and reporting pathogens in populations of fish. J Aquat Anim Health 13:300–309. doi:10.1577/1548-8667(2001)013<0300:ACOMOS>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge facilitation for field sample collection by the Head of Veterinary Services Department at Kenya Wildlife Service (KWS). Elsie Wambui, Mathew Mutinda, Campaign Limo and Antoinette Miyunga all of KWS Veterinary Services Department assisted in sample collection and laboratory work and Joseph Mukeka of the KWS Geographic Information Systems (GIS) section helped in creating the map.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally in the study conception and design, data collection and analysis and preparation of the manuscript.

Corresponding authors

Correspondence to David Ndeereh or Michael J. Jowers.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Ethical approval

The Research Authorisation Committee of KWS, the government agency responsible for wildlife conservation and management, approved the study (Approval Ref: KWS/BRM/5001). Animals were immobilised following protocols recommended by McKenzie (1993) by experienced personnel to ensure a humane exercise as much as possible following applicable KWS guidelines on wildlife veterinary practice (2006).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndeereh, D., Muchemi, G., Thaiyah, A. et al. Molecular survey of Coxiella burnetii in wildlife and ticks at wildlife–livestock interfaces in Kenya. Exp Appl Acarol 72, 277–289 (2017). https://doi.org/10.1007/s10493-017-0146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-017-0146-6

Keywords

Navigation