Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa

Abstract

To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus gossypii. These fields also harboured the cassava apex-inhabiting predator Typhlodromalus aripo and either the leaf-inhabiting predator Amblydromalus manihoti or Euseius fustis. We manipulated predator species composition on individual plants to determine their effect on prey and predator densities. In fields with T. aripo plus A. manihoti, M. tanajoa densities were reduced by T. aripo alone or together with A. manihoti, but neither of these predators, alone or together, reduced O. gossypii densities. In fields with T. aripo plus E. fustis, T. aripo alone or together with E. fustis exerted significant control over O. gossypii, but weak control over M. tanajoa. Densities of any of the predator species were not affected by co-occurring predator species, suggesting a minor role for intraguild predation in the field, contrary to earlier experiments on small plants in the laboratory. We conclude that (1) T. aripo is the most effective predator species in suppressing M. tanajoa, (2) two predator species, T. aripo and E. fustis, are needed to suppress O. gossypii, and (3) predator species together on the same plant do not negatively affect each other nor the extent to which they control their prey. We argue that intraguild predation is reduced due to partial niche separation among predator species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bakker FM, Klein ME (1992) Transtrophic interactions in cassava. Exp Appl Acarol 14:293–311

    Article  Google Scholar 

  2. Bonato O, Baumgartner J, Gutierrez J (1995a) Comparison of biological and demographic parameters for Mononychellus progresivus and Oligonychus gossypii on cassava: influence of temperature. Entomol Exp Appl 75:119–125

    Article  Google Scholar 

  3. Bonato O, Baumgartner J, Gutierrez J (1995b) Sampling plans for Mononychellus progresivus and Oligonychus gossypii (Acari: Tetranychidae) on cassava in Africa. J Econ Entomol 88:1296–1300

    Google Scholar 

  4. Bonato O, Da S, Noronha AC, De Moraes GJ (1999) Distribution et échantillonnage des populations de Amblyseius manihoti Moraes (Acari, Phytoseiidae) sur manioc au Brésil. J Appl Entomol 123:541–546

    Article  Google Scholar 

  5. Briggs CJ (1993) Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am Nat 141:372–397

    Article  Google Scholar 

  6. Bruce-Oliver SJ, Hoy MA, Yaninek JS (1996) Effect of some food sources associated with cassava in Africa on the development, fecundity and longevity of Euseius fustis (Pritchard and Baker) (Acari: Phytoseiidae). Exp Appl Acarol 20:73–85

    Article  Google Scholar 

  7. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    CAS  PubMed  Article  Google Scholar 

  8. Chant DA, McMurtry JA (2005) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): part VI. The tribe Euseiini n. tribe, subtribes Typhlodromalina n. subtribe, Euseiina n. subtribe, and Ricoseiina n. subtribe. Int J Acarol 31:187–224

    Article  Google Scholar 

  9. Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30

    Article  Google Scholar 

  10. Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490

    CAS  PubMed  Article  Google Scholar 

  11. Gnanvossou D, Hanna R, Dicke M (2002) Prey-related odor preference of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo (Acari: Phytoseiidae). Exp Appl Acarol 27:39–56

    PubMed  Article  Google Scholar 

  12. Gnanvossou D, Yaninek JS, Hanna R, Dicke M (2003a) Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Exp Appl Acarol 30:265–278

    PubMed  Article  Google Scholar 

  13. Gnanvossou D, Hanna R, Dicke M (2003b) Infochemical-mediated niche use by the predatory mites Typhlodromalus manihoti and T. aripo (Acari: Phytoseiidae). J Insect Behav 16:523–535

    Article  Google Scholar 

  14. Gnanvossou D, Hanna R, Dicke M (2003c) Infochemical-mediated intraguild interactions among three predatory mites on cassava plants. Oecologia 135:84–90

    PubMed  Google Scholar 

  15. Gnanvossou D, Hanna R, Yaninek JS, Toko M (2005) Comparative life history traits of three neotropical phytoseiid mites maintained on plant-based diets. Biol Control 35:32–39

    Article  Google Scholar 

  16. Hanna R, Yaninek JS, Megevand B, Toko M, Onzo A, Gnanvossou D, Zannou I, Paraiso G (1998) Biological control of cassava green mite in Africa—status and outlook. In: Proceedings of the 8th triennial symposium of the International Society of Tropical Root Crops-Africa Branch, Oct 1998, Cotonou, Bénin

  17. Hanna R, Onzo A, Lingeman R, Yaninek JS, Sabelis MW (2005) Seasonal cycles and persistence in an acarine predator–prey system on cassava in Africa. Pop Ecol 47:107–117

    Article  Google Scholar 

  18. Littell RC, Pendergast J, Natarajan R (2000) Tutorial in biostatistics: modelling covariance structure in the analysis of repeated measures data. Stat Med 19:1793–1819

    CAS  PubMed  Article  Google Scholar 

  19. Losey JE, Denno RF (1998) Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–2152

    Google Scholar 

  20. Losey JE, Denno RF (1999) Factors facilitating synergistic predation: the central role of synchrony. Ecol Appl 9:378–386

    Article  Google Scholar 

  21. Magalhães S, Bakker FM (2002) Plant feeding by a predatory mite inhabiting cassava. Exp Appl Acarol 27:27–37

    PubMed  Article  Google Scholar 

  22. Magalhães S, Janssen A, Hanna R, Sabelis MW (2002) Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia 132:143–149

    Article  Google Scholar 

  23. Magalhães S, Brommer JE, Silva ES, Bakker FM, Sabelis MW (2003) Life-history trade-off in two predator species sharing the same prey: a study on cassava-inhabiting mites. Oikos 102:533–542

    Article  Google Scholar 

  24. Moraes GJ, Zannou ID, Oliveira AR, Yaninek JS, Hanna R (2006) Phytoseiid mites of the subtribes Typhlodromalina and Euseiina (Acari: Phytoseiidae: Euseiini) from sub-Saharan Africa. Zootaxa 1114:1–52

    Google Scholar 

  25. Northfield TD, Snyder WE, Snyder GB, Eigenbrode SD (2012) A simple plant mutation abets a predator-diversity cascade. Ecology 93:411–420

    PubMed  Article  Google Scholar 

  26. Onzo A, Hanna R, Zannou I, Sabelis MW, Yaninek JS (2003a) Dynamics of refuge use: diurnal, vertical migration by predatory and herbivorous mites within cassava plants. Oikos 101:59–69

    Article  Google Scholar 

  27. Onzo A, Hanna R, Sabelis MW (2003b) Interactions in an acarine predator guild: Impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Africa. Exp Appl Acarol 31:225–241

    PubMed  Article  Google Scholar 

  28. Onzo A, Hanna R, Janssen A, Sabelis MW (2004) Interactions between two neotropical phytoseiid predators on cassava plants and consequences for biological control of a shared spider mite prey—a screenhouse evaluation. Biocont Sci Tech 14:63–76

    Article  Google Scholar 

  29. Onzo A, Hanna R, Negloh K, Toko M, Sabelis MW (2005) Biological control of cassava green mite with exotic and indigenous phytoseiid predators—effects of intraguild predation and supplementary food. Biol Control 33:143–152

    Article  Google Scholar 

  30. Onzo A, Hanna R, Sabelis MW (2009) Within-plant migration of the predatory mite Typhlodromalus aripo from the apex to the leaves of cassava: response to day–night cycle, prey location and prey density. J Insect Behav 22:186–195

    Article  Google Scholar 

  31. Onzo A, Hanna R, Sabelis MW (2012) The predatory mite Typhlodromalus aripo prefers green-mite induced plant odours from pubescent cassava varieties. Exp Appl Acarol 58:359–370

    PubMed Central  PubMed  Article  Google Scholar 

  32. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  33. Prasad RP, Snyder WE (2006) Diverse trait-mediated interactions in a multi-predator, multi-prey community. Ecology 87:1131–1137

    PubMed  Article  Google Scholar 

  34. Relyea RA (2003) How prey respond to combined predators: a review and an empirical test. Ecology 84:1827–1839

    Article  Google Scholar 

  35. Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents: theory and evidence. Biol Control 5:303–335

    Article  Google Scholar 

  36. Sabelis MW (1992) Arthropod predators. In: Crawley MJ (ed) Natural enemies, the population biology of predators, parasites and diseases. Blackwell, Oxford, pp 225–264

    Google Scholar 

  37. SAS Institute (2008) Software version 9.2 (TSMO) Cary, North Carolina, USA

  38. Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K (1985) Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst 16:269–311

    Article  Google Scholar 

  39. Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:325–329

    Article  Google Scholar 

  40. Snyder WE, Snyder GB, Finke DL, Straub CS (2006) Predator biodiversity strengthens herbivore suppression. Ecol Lett 9:789–796

    PubMed  Article  Google Scholar 

  41. Snyder GB, Finke DB, Snyder WE (2008) Predator biodiversity strengthens aphid suppression across single- and multiple-species prey communities. Biol Control 44:52–60

    Article  Google Scholar 

  42. Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman and Company, New York

    Google Scholar 

  43. Soluk DA (1993) Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74:219–225

    Article  Google Scholar 

  44. Soluk DA, Collins NC (1988) Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators. Oikos 52:94–100

    Article  Google Scholar 

  45. Stiling P, Cornelissen T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol Control 34:236–246

    Article  Google Scholar 

  46. Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282

    PubMed  Article  Google Scholar 

  47. Straub CS, Snyder WE (2008) Increasing enemy biodiversity strengthens herbivore suppression on two plant species. Ecology 89:1605–1615

    PubMed  Article  Google Scholar 

  48. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    CAS  PubMed  Article  Google Scholar 

  49. Tylianakis JM, Romo CM (2010) Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol 11:657–668

    Article  Google Scholar 

  50. Yaninek JS, Hanna R (2003) Cassava green mite in Africa—a unique example of successful classical biological control of a mite pest on a continental scale. In: Neuenschwander P, Borgemeister C, Langewald L (eds) Biological control in IPM systems in Africa. CABI Publishing, Wallingford, pp 61–75

    Google Scholar 

  51. Yaninek JS, Onzo A (1988) Survey of cassava green mite in the People’s Republic of Benin, Jan 1988. IITA publication series. IITA, Ibadan, Nigeria. p 30

  52. Yaninek JS, Saizonou S, Onzo A, Zannou I, Gnanvossou D (1996) Seasonal and habitat variability in the fungal pathogens, Neozygites cf. florida and Hirsutella. thompsonii, associated with cassava mites in Benin, West Africa. Biocont Sci Tech 1:323–330

    Article  Google Scholar 

  53. Yaninek JS, Mégevand B, Ojo B, Cudjoe AR, Abole E, Onzo A, Zannou I (1998) Establishment and spread of Typhlodromalus manihoti (Acari; Phytoseiidae), an introduced phytoseiid predator of Mononychellus tanajoa (Acari: Tetranychidae) in Africa. Environ Entomol 276:1496–1505

    Google Scholar 

  54. Zannou ID, Hanna R, De Moraes GJ, Kreiter S (2005) Cannibalism and interspecific predation in a phytoseiid predator guild from cassava fields in Africa: evidence from the laboratory. Exp Appl Acarol 37:27–42

    PubMed  Article  Google Scholar 

  55. Zannou ID, Hanna R, Agboton B, De Moraes GJ, Kreiter S, Phiri G, Jone A (2007) Native phytoseiid mites as indicators of non-target effects of the introduction of Typhlodromalus aripo for the biological control of cassava green mite in Africa. Biol Control 41:190–198

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of Sam Korie in statistical analysis and of Dr Ignace Zannou in identifying phytoseiids specimens. We are very grateful to B. Bovis, H. Dossounon, R. Houndafotché and M. Adandé for their technical assistance, both in field and in the laboratory. We are honored by the full cooperation of farmers in the Department of Mono who allowed us to conduct the experiments in their cassava fields. Three anonymous reviewers provided valuable comments on an earlier version of the manuscript. This research was supported with funds provided to the International Institute of Tropical Agriculture (IITA) by the International Fund for Agricultural Development (IFAD). In addition, a postdoctoral fellowship was granted to A. Onzo, based on funds provided to the University of Amsterdam and IITA by the Netherlands Foundation for the Advancement of Tropical Research (WOTRO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexis Onzo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 57 kb)

Supplementary material 2 (XLS 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Onzo, A., Sabelis, M.W. & Hanna, R. Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa. Exp Appl Acarol 62, 293–311 (2014). https://doi.org/10.1007/s10493-013-9742-2

Download citation

Keywords

  • Mononychellus tanajoa
  • Typhlodromalus aripo
  • Amblydromalus manihoti
  • Euseius fustis
  • Phytoseiidae
  • Predator facilitation