A new multiple attribute decision making method for selecting design schemes in sponge city construction with trapezoidal interval type-2 fuzzy information

Abstract

Selecting the most suitable design scheme in sponge city construction can be seen as a multiple attribute decision-making (MADM) problem. To express the uncertain and fuzzy decision-making information, interval type-2 fuzzy sets (IT2FSs) are useful tools. The paper focuses on decision making with trapezoidal interval type-2 fuzzy numbers (TIT2FNs) and discusses the evaluation of municipal road design schemes in sponge city construction. To do these, several operations on TIT2FNs based on Hamacher t-norm and t-conorm are first defined, where both the operations on the membership degree and on eight non-negative real values are considered. Then, two (2-additive) generalized Shapley trapezoidal interval type-2 fuzzy Hamacher Choquet integral operators are presented, which globally reflect interactions among elements. Considering the case where the decision-making weighting information is incomplete known, Manhattan distance measure-based models for obtaining the optimal fuzzy measure and 2-additive measure are constructed, respectively. Furthermore, an approach for trapezoidal interval type-2 fuzzy MADM is developed. Finally, a practical example is provided to illustrate the utilization of the new method, and comparison analysis is provided.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Abdullah L, Zulkifli N (2015) Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: an application to human resource management. Expert Syst Appl 42(9):4397–4409

    Article  Google Scholar 

  2. 2.

    Baykasoglu A, Golcuk I (2017) Development of an interval type-2 fuzzy sets based hierarchical MADM model by combining DEMATEL and TOPSIS. Expert Syst Appl 70:37–51

    Article  Google Scholar 

  3. 3.

    Benayoun R, Roy B, Sussman N (1966) Manual de reference du program ELECTRE. Note de Synthese et formation. Direction Scientifique SEMA, Paris

    Google Scholar 

  4. 4.

    Cai YP, Lin X, Yue WC (2018) Inexact fuzzy chance-constrained programming for community-scale urban stormwater management. J Clean Prod 182:937–945

    Article  Google Scholar 

  5. 5.

    Chen SM, Lee LW (2010) Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst Appl 37(4):2790–2798

    Article  Google Scholar 

  6. 6.

    Chen SM, Lee LW (2010) Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Syst Appl 37(1):824–833

    Article  Google Scholar 

  7. 7.

    Chen TY (2011) Signed distanced-based TOPSIS method for multiple criteria decision analysis based on generalized interval-valued fuzzy numbers. Int J Inf Tech Dec Ma 10(6):1131–1159

    MATH  Article  Google Scholar 

  8. 8.

    Chen TY (2013) An interactive method for multiple criteria group decision analysis based on interval type-2 fuzzy sets and its application to medical decision making. Fuzzy Opt Dec Ma 12(3):323–356

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Chen TY (2014) An ELECTRE-based outranking method for multiple criteria group decision making using interval type-2 fuzzy sets. Inf Sci 263:1–21

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Cheng H, Tang J (2015) Interval-valued intuitionistic fuzzy multi-criteria decision making based on the generalized Shapley geometric Choquet integral. J Chin Ins Ind En 33(1):1–16

    Google Scholar 

  11. 11.

    Chiao KP (2011) Multiple criteria group decision making with triangular interval type-2 fuzzy sets. IEEE International Conference on Fuzzy Systems, Taipei, pp 2575–2582

    Google Scholar 

  12. 12.

    Choquet G (1954) Theory of capacities. Annales de l'Institut Fourier 5:131–295

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Demirel T, Demirel NC, Kahraman C (2010) Multi-criteria warehouse location selection using Choquet integral. Expert Syst Appl 37(5):3943–3952

    Article  Google Scholar 

  14. 14.

    Demirel T, Oner SC, Tuzun S, Deveci M, Oner M, Demirel NC (2018) Choquet integral-based hesitant fuzzy decision-making to prevent soil erosion. Geoderma 313:276–289

    Article  Google Scholar 

  15. 15.

    Dong YC, Zha QB, Zhang HJ, Kou G, Fujita H, Chiclana F, Herrera-Viedma E (2018) Consensus reaching in social network group decision making: research paradigms and challenges. Knowl-Based Syst 162:3–13

    Article  Google Scholar 

  16. 16.

    Fahmi A, Abdullah S, Amin F, Siddiqui N, Ali A (2017) Aggregation operators on triangular cubic fuzzy numbers and its application to multi-criteria decision making problems. J Intell Fuzzy Syst 33(6):3323–3337

    Article  Google Scholar 

  17. 17.

    Garg H (2019) Intuitionistic fuzzy Hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems. Iran J Sci Tech-Trans Elec En 43(3):597–613

    Article  Google Scholar 

  18. 18.

    Garg H, Agarwal N, Tripathi A (2017) Choquet integral-based information aggregation operators under the interval-valued intuitionistic fuzzy set and its applications to decision-making process. Int J Uncertain Quantif 7(3):249–269

    MathSciNet  Article  Google Scholar 

  19. 19.

    Garg H, Nancy (2019) Multiple criteria decision making based on frank Choquet Heronian mean operator for single-valued neutrosophic sets. Appl Comput Math 18(2):163–188

  20. 20.

    Garg H, Singh S (2018) A novel triangular interval type-2 intuitionistic fuzzy sets and their aggregation operators. Iran J Fuzzy Syst 15(5):69–93

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Gomes LFAM, Lima MMPP (1992) TODIM: basics and application to multicriteria ranking of projects with environmental impacts. Foun Comput Dec Sci 16(4):113–127

    MATH  Google Scholar 

  22. 22.

    Gong YB, Dai LL, Hu N (2016) Interval type-2 fuzzy information aggregation based on Einstein operations and its application to decision making. Int J Innovative Comput Inf Control 12(6):2011–2026

    Google Scholar 

  23. 23.

    Gong YB, Dai LL, Hu N (2016) Mutil-attribute decision making method based on Bonferroni mean operator and possibility degree of interval type-2 trapezoidal fuzzy sets. Iran J Fuzzy Syst 15(5):97–115

    MATH  Google Scholar 

  24. 24.

    Gong YB, Hu N, Zhang JG, Liu GF, Deng JG (2015) Multi-attribute group decision making method based on geometric Bonferroni mean operator of trapezoidal interval type-2 fuzzy numbers. Comput Ind En 81:67–176

    Google Scholar 

  25. 25.

    Grabisch M (1996) The application of fuzzy integrals in multi-criteria decision making. Eur J Oper Res 89(3):445–456

    MATH  Article  Google Scholar 

  26. 26.

    Grabisch M (1997) K-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst 92 92(2):167–189

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Hajek P (1998) Metamathematics of fuzzy logic. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  28. 28.

    Hamachar H (1978) Uber logische verknunpfungenn unssharfer Aussagen und deren Zugenhorige Bewertungsfunktione, In: Trappl R, Klir GJ (eds), Progress in Cybernetics and Systems Research, Hemisphere, Washington DC, 3:276–288

  29. 29.

    Hu JH, Zhang Y, Chen XH, Liu YM (2013) Multi-criteria decision-making method based on possibility degree of interval type-2 fuzzy number. Knowl-Based Syst 43(2):21–29

    Article  Google Scholar 

  30. 30.

    Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, Berlin

    Google Scholar 

  31. 31.

    Hwang CM, Yang MS, Hung WL, Lee ES (2011) Similarity, inclusion and entropy measures between type-2 fuzzy sets based on the Sugeno integral. Math Comput Model 53(9–10):1788–1797

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Ju YB, Ju DW, Wang AH, Ju MY (2017) GRP method for multiple attribute group decision making under trapezoidal interval type-2 fuzzy environment. J Intell Fuzzy Syst 33(6):3469–3482

    Article  Google Scholar 

  33. 33.

    Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132(1–4):195–220

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Karnik NN, Mendel JM (2001) Operations on type-2 fuzzy sets. Fuzzy Sets Syst 122(2):327–348

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Lee LW, Chen SM (2008) A new method for fuzzy multiple attribute group decision-making based on the arithmetic operations of interval type-2 fuzzy sets. In: 7th international conference on machine learning and cybernetics, Kunming, pp 3084–3089

  36. 36.

    Li JM, Xu XY, Yao ZX, Lu Y (2019) Transit system improving service quality with the fuzzy TOPSIS method: a case study of the Beijing rail transit system. IEEE Access 7:114271–114284

    Article  Google Scholar 

  37. 37.

    Li Q, Wang F, Yu Y, Huang ZC, Li MT, Guan YT (2019) Comprehensive performance evaluation of LID practices for the sponge city construction: a case study in Guangxi, China. J Environ Manag 231:10–20

    Article  Google Scholar 

  38. 38.

    Liao HC, Si GS, Xu ZS, Fujita H (2018) Hesitant fuzzy linguistic preference utility set and its application in selection of fire rescue plans. Int J En Res Pub He 15(4):664

    Article  Google Scholar 

  39. 39.

    Liu PD (2014) Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans Fuzzy Syst 22(1):83–97

    Article  Google Scholar 

  40. 40.

    Marichal JL (2000) The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making. Discret Appl Math 107(1–3):139–164

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Mei C, Liu JH, Wang H, Yang ZY, Ding XY, Shao WW (2018) Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci Total Environ 639:1394–1407

    Article  Google Scholar 

  42. 42.

    Mendel JM, John RI (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  43. 43.

    Mendel JM, John RI, Liu FL (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  44. 44.

    Meng FY, Chen XH, Zhang Q (2015) An approach to interval-valued intuitionistic uncertain linguistic multi-attribute group decision making. Int J Mach Learn Cybern 6(5):859–871

    Article  Google Scholar 

  45. 45.

    Meng FY, Chen XH, Zhang Q (2015) Induced generalized hesitant fuzzy Shapley hybrid operators and their application in multi-attribute decision making. Appl Soft Comput 28:599–607

    Article  Google Scholar 

  46. 46.

    Meng FY, Tan CQ (2017) A method for multi-attribute group decision making based on generalized interval-valued intuitionistic fuzzy Choquet integral operators. Int J Uncertainty Fuzziness Knowl-Based Syst 25(5):821–849

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Meng FY, Tang J (2013) Interval-valued intuitionistic fuzzy multiattribute group decision making based on cross entropy measure and Choquet integral. Int J Intell Syst 28(12):1172–1195

    Article  Google Scholar 

  48. 48.

    Meng FY, Tang J, Fujita H (2019) Consistency-based algorithms for decision making with interval fuzzy preference relations. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2019.2893307

  49. 49.

    Meyer P, Roubens M (2006) On the use of the Choquet integral with fuzzy numbers in multiple criteria decision support. Fuzzy Sets Syst 157(7):927–938

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    MOHURD (Ministry of Housing and Urban-rural Development) (2014) Technical guidelines for the construction of sponge city: low impact development of rainwater system construction (Trial). http://www.mohurd.gov.cn/wjfb/201411/t20141102_219465.html

  51. 51.

    MOHURD (Ministry of Housing and Urban-rural Development) (2016) The notice of the central government’s financial support for the pilot project of the sponge city construction. http://www.mohurd.gov.cn/wjfb/201603/t20160302_226802.html

  52. 52.

    Mousakhani S, Nazari-Shirkouhi S, Bozorgi-Amiri A (2017) A novel interval type-2 fuzzy evaluation model based group decision analysis for green supplier selection problems: a case study of battery industry. J Clean Prod 168:205–218

    Article  Google Scholar 

  53. 53.

    Pandey A, Kumar A (2017) A note on “a novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets”. Appl Math Model 41:691–693

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Qin JD, Liu XW (2015) Multi-attribute group decision making using combined ranking value under interval type-2 fuzzy environment. Inf Sci 297:293–315

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Qin JD, Liu XW, Pedrycz W (2017) A multiple attribute interval type-2 fuzzy group decision making and its application to supplier selection with extended LINMAP method. Soft Comput 21(12):3207–3226

    MATH  Article  Google Scholar 

  56. 56.

    Qin JD, Liu XW, Pedrycz W (2017) An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. Eur J Oper Res 258(2):626–638

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Qu GH, Wang YH, Qu WH, Li CH, Zhou HS (2018) Some new generalized dual hesitant fuzzy generalized Choquet integral operators based on Shapley fuzzy measures. J Intell Fuzzy Syst 35(5):5477–5493

    Article  Google Scholar 

  58. 58.

    Radhakrishnan S, Nair SG, Isaac J (2019) Analysis of parameters affecting blood oxygen saturation and modeling of fuzzy logic system for inspired oxygen prediction. Comput Methods Prog Biomed 176:43–49

    Article  Google Scholar 

  59. 59.

    Rahimdel MJ, Bagherpour R (2018) Haulage system selection for open pit mines using fuzzy MCDM and the view on energy saving. Neural Comput Applic 29(6):187–199

    Article  Google Scholar 

  60. 60.

    Robert R (1991) On Hamacher-sum of triangular fuzzy numbers. Fuzzy Sets Syst 42:205–212

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    Salehi M, Maleki HR, Niroomand S (2018) A multi-objective assembly line balancing problem with worker's skill and qualification considerations in fuzzy environment. Appl Intell 48(8):2137–2156

    Article  Google Scholar 

  62. 62.

    Santos J, Bressi S, Cerezo V, Lo Presti D (2019) SUP&R DSS: a sustainability-based decision support system for road pavements. J Clean Prod 206:524–540

    Article  Google Scholar 

  63. 63.

    Schweizer B, Sklar A (1983) Probabilistic metric spaces. North Holland, New York

    Google Scholar 

  64. 64.

    Shapley LS (1953) A value for n-person game. In: Kuhn H and Tucker a (Eds.), contributions to the theory of games, vol 2. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  65. 65.

    Singh S, Garg H (2017) Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Appl Intell 46(4):788–799

    Article  Google Scholar 

  66. 66.

    Singh S, Garg H (2018) Symmetric triangular interval type-2 intuitionistic fuzzy sets with their applications in multi criteria decision making. Symmetry 10(9):1–27

    MATH  Article  Google Scholar 

  67. 67.

    Sugeno M (1974) Theory of fuzzy integral and its application. Doctorial dissertation, Tokyo Institute of Technology

    Google Scholar 

  68. 68.

    Sun WH, Li D, Liu P (2018) A decision-making method for sponge city design based on grey correlation degree and TOPSIS method. J Int Math 21(4):1031–1042

    Google Scholar 

  69. 69.

    Tan CQ, Chen XH (2010) Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making. Expert Syst Appl 37:149–157

    Article  Google Scholar 

  70. 70.

    Tan CQ, Jiang ZZ, Chen XH (2015) An extended TODIM method for hesitant fuzzy interactive multicriteria decision making based on generalized Choquet integral. J Intell Fuzzy Syst 29(1):293–305

    MathSciNet  Article  Google Scholar 

  71. 71.

    Tan CQ, Yi WT, Chen XH (2015) Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making. Appl Soft Comput 26:325–349

    Article  Google Scholar 

  72. 72.

    Tang J, Meng FY (2018) Linguistic intuitionistic fuzzy Hamacher aggregation operators and their application to group decision making. Gran Comput 5:1–16

    Google Scholar 

  73. 73.

    Tian XL, Xu ZS, Fujita H (2018) Sequential funding the venture project or not? A prospect consensus process with probabilistic hesitant fuzzy preference information. Knowl-Based Syst 161:172–184

    Article  Google Scholar 

  74. 74.

    Tones-Blanc C, Cubillo S, Hernandez P (2017) Aggregation operators on type-2 fuzzy sets. Fuzzy Sets Syst 324:74–90

    MathSciNet  MATH  Article  Google Scholar 

  75. 75.

    Tseng ML, Wu KJ, Hu JY, Wang CH (2018) Decision-making model for sustainable supply chain finance under uncertainties. Int J Prod Econ 205:30–36

    Article  Google Scholar 

  76. 76.

    Vatankhah S, Zarra-Nezhad M, Amirnejad G (2019) Tackling the fuzziness of business model concept: a study in the airline industry. Tour Manag 74:134–143

    Article  Google Scholar 

  77. 77.

    Wei GW, Lu M, Tang XY, Wei Y (2018) Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Int J Intell Syst 33(6):1197–1233

    Article  Google Scholar 

  78. 78.

    Wang H, Mei C, Liu JH (2017) Systematic construction pattern of the sponge city. J Hydraul Eng 48(9):1009–1014

    Google Scholar 

  79. 79.

    Wang HH, Ju YB, Liu PD, Ju DW, Liu ZM (2018) Some trapezoidal interval type-2 fuzzy Heronian mean operators and their application in multiple attribute group decision making. J Intell Fuzzy Syst 35(2):2323–2337

    Article  Google Scholar 

  80. 80.

    Wang JC, Tsao CY, Chen TY (2015) A likelihood-based QUALIFLEX method with interval type-2 fuzzy sets for multiple criteria decision analysis. Soft Comput 19(8):2225–2243

    Article  Google Scholar 

  81. 81.

    Wang PY, Shen J, Zhang B (2016) A new method for two-sided matching decision making of PPP projects based on intuitionistic fuzzy choquet integral. J Intell Fuzzy Syst 31(4):2221–2230

    Article  Google Scholar 

  82. 82.

    Wang SH, Yu H, Song ML (2018) Assessing the efficiency of environmental regulations of large-scale enterprises based on extended fuzzy data envelopment analysis. Ind Manag Data Syst 118(2):463–479

    Article  Google Scholar 

  83. 83.

    Wang WZ, Liu XW, Qin Y (2018) A fuzzy fine-Kinney-based risk evaluation approach with extended MULTIMOORA method based on Choquet integral. Comput Ind En 125:111–123

    Article  Google Scholar 

  84. 84.

    Wang YM (1997) Using the method of maximizing deviations to make decision for multi-indices. J Syst En Electron 31(8):21–26

    Google Scholar 

  85. 85.

    Wei GW, Zhao XF, Wang HJ, Lin R (2012) Hesitant fuzzy Choquet integral aggregation operators and their applications to multiple attribute decision making. Inf-An Int Ins J 15(2):441–448

    Google Scholar 

  86. 86.

    Xu ZS (2010) Choquet integrals of weighted intuitionistic fuzzy information. Inf Sci 180(5):726–736

    MathSciNet  MATH  Article  Google Scholar 

  87. 87.

    Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cybern 18:183–190

    MATH  Article  Google Scholar 

  88. 88.

    Yuan XL, Tang YZ, Li Y (2018) Environmental and economic impacts assessment of concrete pavement brick and permeable brick production process - a case study in China. J Clean Prod 171:198–208

    Article  Google Scholar 

  89. 89.

    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Article  Google Scholar 

  90. 90.

    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    MathSciNet  MATH  Article  Google Scholar 

  91. 91.

    Zhai DY, Mendel JM (2011) Uncertainty measures for general Type-2 fuzzy sets. Inf Sci 181(3):503–518

    MathSciNet  MATH  Article  Google Scholar 

  92. 92.

    Zhang ZM (2018) Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput Applic 29(4):1039–1054

    Article  Google Scholar 

  93. 93.

    Zhu JH, Li YL (2018) Hesitant fuzzy linguistic aggregation operators based on the Hamacher t-norm and t-conorm. Symmetry 10(6):189

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shutian Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Li, S. A new multiple attribute decision making method for selecting design schemes in sponge city construction with trapezoidal interval type-2 fuzzy information. Appl Intell 50, 2252–2279 (2020). https://doi.org/10.1007/s10489-019-01608-z

Download citation

Keywords

  • MADM
  • Sponge city construction
  • TIT2FN
  • Choquet integral
  • Generalized Shapley function