Skip to main content
Log in

Enhanced particle swarm optimization with multi-swarm and multi-velocity for optimizing high-dimensional problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Traditional particle swarm optimization (PSO) algorithm mainly relies on the history optimal information to guide its optimization. However, when the traditional PSO algorithm searches high-dimensional complex problems, wrong position information of the best particles can easily cause the most of the particles move toward wrong space, so the traditional PSO algorithm is easily trapped into local optimum. To improve the optimization performance of the traditional PSO algorithm, an enhanced particle swarm optimization with multi-swarm and multi-velocity (MMPSO) is proposed. It comprises three particle swarms and three velocity update methods. The information sharing of the multi-swarm with various velocity update methods in the MMPSO can quickly discover more useful global information and local information, helping prevent particles from falling into local optimum and improving optimization precision of the algorithm. The MMPSO is tested on fourteen benchmark functions, and is compared with the other improved PSO algorithms. Comparison results validate the validity and feasibility of the MMPSO to optimize high-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abualigah LM, Khader AT, Al-Betar MA, Alomari OA (2017) Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst Appl 84:24–36

    Article  Google Scholar 

  2. Alswaitti M, Albughdadi M, Isa NAM (2018) Density-based particle swarm optimization algorithm for data clustering. Expert Syst Appl 91:170–186

    Article  Google Scholar 

  3. Bamakan SMH, Wang H, Yingjie T, Shi Y (2016) An effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimization. Neurocomputing 199:90–102

    Article  Google Scholar 

  4. Chang WD (2017) Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm. Appl Soft Comput 60:60–72

    Article  Google Scholar 

  5. Chen J, Zheng J, Wu P, Zhang L, Wu Q (2017) Dynamic particle swarm optimizer with escaping prey for solving constrained non-convex and piecewise optimization problems. Expert Syst Appl 86:208–223

    Article  Google Scholar 

  6. Gülcü S, Kodaz H (2015) A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization. Eng Appl Artif Intell 45:33–45

    Article  Google Scholar 

  7. Gunasundari S, Janakiraman S, Meenambal S (2016) Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis. Expert Syst Appl 56:28–47

    Article  Google Scholar 

  8. Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255

    Article  Google Scholar 

  9. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks proceedings, vol 4, pp 1942–1948

  10. Kermadi M, Berkouk EM (2017) Artificial intelligence-based maximum power point tracking controllers for photovoltaic systems: comparative study. Renew Sust Energ Rev 69:369–386

    Article  Google Scholar 

  11. Khan SU, Yang S, Wang L, Liu L (2016) A modified particle swarm optimization algorithm for global optimizations of inverse problems. IEEE Trans Magn 52(3):1–4

    Article  Google Scholar 

  12. Kiranyaz S, Pulkkinen J, Gabbouj M (2011) Multi-dimensional particle swarm optimization in dynamic environments. Expert Syst Appl 38(3):2212–2223

    Article  Google Scholar 

  13. Kumar EV, Raaja GS, Jerome J (2016) Adaptive PSO for optimal LQR tracking control of 2 dof laboratory helicopter. Appl Soft Comput 41:77–90

    Article  Google Scholar 

  14. Li NJ, Wang WJ, Hsu CCJ, Chang W, Chou HG, Chang JW (2014) Enhanced particle swarm optimizer incorporating a weighted particle. Neurocomputing 124:218–227

    Article  Google Scholar 

  15. Li XM, Sun YL, Chen WN, Zhang J (2017) Multi-swarm particle swarm optimization for payment scheduling. In: 2017 seventh international conference on information science and technology (ICIST), pp 284–291

  16. Liu R, Li J, fan J, Mu C, Jiao L (2017) A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization. Eur J Oper Res 261(3):1028–1051

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu ZG, Ji XH, Liu YX (2018) Hybrid non-parametric particle swarm optimization and its stability analysis. Expert Syst Appl 92:256–275

    Article  Google Scholar 

  18. Liu ZH, Wei HL, Zhong QC, Liu K, Li XH (2017) GPU implementation of DPSO-RE algorithm for parameters identification of surface PMSM considering VSI nonlinearity. IEEE J Emerg Select Topics Power Electron 5(3):1334–1345

    Article  Google Scholar 

  19. Ma K, Hu S, Yang J, Xu X, Guan X (2017) Appliances scheduling via cooperative multi-swarm PSO under day-ahead prices and photovoltaic generation. Appl Soft Comput 62:504–513

    Article  Google Scholar 

  20. Moradi MH, Bahrami FV, Mohammad A (2017) Power flow analysis in islanded micro-grids via modeling different operational modes of DGs: a review and a new approach. Renew Sust Energ Rev 69:248–262

    Article  Google Scholar 

  21. Nieto PG, Garcĺa-Gonzalo E, Fernández JA, Muñiz CD (2016) A hybrid PSO optimized SVM-based model for predicting a successful growth cycle of the spirulina platensis from raceway experiments data. J Comput Appl Math 291:293–303

    Article  MathSciNet  MATH  Google Scholar 

  22. Pandit M, Srivastava L, Sharma M (2015) Performance comparison of enhanced PSO and DE variants for dynamic energy/reserve scheduling in multi-zone electricity market. Appl Soft Comput 37:619–631

    Article  Google Scholar 

  23. Rahmani M, Ghanbari A, Ettefagh MM (2016) Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst Appl 56:164–176

    Article  Google Scholar 

  24. Samal NR, Konar A, Nagar A (2008) Stability analysis and parameter selection of a particle swarm optimizer in a dynamic environment. In: 2008 second UKSIM European symposium on computer modeling and simulation, pp 21–27

  25. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: IEEE international conference on evolutionary computation, pp 69–73

  26. Shirani H, Habibi M, Besalatpour A, Esfandiarpour I (2015) Determining the features influencing physical quality of calcareous soils in a semiarid region of Iran using a hybrid PSO-DT algorithm. Geoderma 259-260:1–11

    Article  Google Scholar 

  27. Tanweer M, Suresh S, Sundararajan N (2015) Self regulating particle swarm optimization algorithm. Inf Sci 294:182–202

    Article  MathSciNet  MATH  Google Scholar 

  28. fang Wang Z, Wang J, mei Sui Q, Jia L (2017) The simultaneous measurement of temperature and mean strain based on the distorted spectra of half-encapsulated fiber bragg gratings using improved particle swarm optimization. Opt Commun 392:153–161

    Article  Google Scholar 

  29. Xu G (2013) An adaptive parameter tuning of particle swarm optimization algorithm. Appl Math Comput 219(9):4560–4569

    MathSciNet  MATH  Google Scholar 

  30. Yang C, Gao W, Liu N, Song C (2015) Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight. Appl Soft Comput 29:386–394

    Article  Google Scholar 

  31. Yang G, Zhou F, Ma Y, Yu Z, Zhang Y, He J (2018) Identifying lightning channel-base current function parameters by powell particle swarm optimization method. IEEE Trans Electromagn Compat 60(1):182–187

    Article  Google Scholar 

  32. Yuan Q, Yin G (2015) Analyzing convergence and rates of convergence of particle swarm optimization algorithms using stochastic approximation methods. IEEE Trans Autom Control 60(7):1760–1773

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishun Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Y., Peng, Z., Dai, Y. et al. Enhanced particle swarm optimization with multi-swarm and multi-velocity for optimizing high-dimensional problems. Appl Intell 49, 335–351 (2019). https://doi.org/10.1007/s10489-018-1258-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1258-3

Keywords

Navigation