Advertisement

Applied Intelligence

, Volume 48, Issue 10, pp 3653–3671 | Cite as

Hybrid multicriteria algorithms applied to structural design of wireless local area networks

  • Marlon P. Lima
  • Ricardo H. C. Takahashi
  • Marcos A. M. Vieira
  • Eduardo G. Carrano
Article
  • 75 Downloads

Abstract

This manuscript presents a novel approach based on hybrid optimization techniques for planning Wireless Local Area Networks in two stages: i) network structure design for access point (AP) placement and channel assignment and ii) channel assignment enhancement. We consider two objective functions: network load balance and signal-to-interference-plus-noise ratio; and three hard constraints: maximum AP capacities, client demand attendance, and minimum coverage levels. The proposed algorithm delivers an approximation of the efficient solution set, considering the two functions described above. The results from two scenarios were compared to the following four approaches: two multiobjective evolutionary algorithms, a well-known commercial tool, and a greedy technique. Finally, the solutions were subjected to sensitivity analysis to validate their robustness regarding user mobility and AP failures.

Keywords

WLAN planning Channel assignment Multiobjective optimization Hybrid algorithms 

Notes

Acknowledgments

The authors would like to thank Brazilian agencies CAPES, CNPq, and FAPEMIG for financial support; Ekahau, Inc. for providing a functional version of Ekahau Site Survey software for seven-day testing; and Charles F. S. Vardiero and Prof. Felipe Campelo for their careful review of our manuscript.

References

  1. 1.
    (2008). IEEE 802.11r: Amendment 2: Fast Basic Service Set (BSS) Transition. IEEE Std 802.11r-2008 pp 1–126Google Scholar
  2. 2.
    Site survey tools @CISCO forum (2010). https://learningnetwork.cisco.com/thread/24648
  3. 3.
    Top Wireless WiFi Site Survey Software @MetaGeek forum (2010). http://forums.metageek.com/showthread.php?3412-Top-Wireless-WiFi-Site-Survey-Software
  4. 4.
    Adickes MD, Billo RE, Norman BA, Banerjee S, Rajgopal J (1999) Optimization of indoor wireless communication network layouts. Tech. rep., Dept. Industrial Engineering - University of PittsburghGoogle Scholar
  5. 5.
    Al-Bado M, Merz R, Sengul C, Feldmann A (2011) A site-specific indoor link model for realistic wireless network simulations. In: Proceedings of the 4th international ICST conference on simulation tools and techniques, SIMUTools ’11. Institute for computer sciences, ICST, Brussels, BelgiumGoogle Scholar
  6. 6.
    Araújo J, Rodrigues J, Fraiha S, Gervasio H (2008) A WLAN planning proposal through computational intelligence and genetic algorithms hybrid approach. In: Proceedings of the Mobility conferenceGoogle Scholar
  7. 7.
    Balachandran A, Voelker G, Bahl P, Rangan P (2002) Characterizing user behavior and network performance in a public wireless LAN. In: Proceedings of the ACM sigmetricsGoogle Scholar
  8. 8.
    Balbi H, Fernandes N, Souza F, Carrano R, Albuquerque C, Muchaluat-Saade D, Magalhaes L (2012) Centralized channel allocation algorithm for IEEE 802.11 networks. In: Global information infrastructure and networking symposium (GIIS), pp 1–7Google Scholar
  9. 9.
    Bejerano Y, Han SJ (2006) Cell Breathing Techniques for Balancing the Access Point Load in Wireless LANs. Tech. rep. Bell Laboratories – Lucent TechnologiesGoogle Scholar
  10. 10.
    Bouckaert S, Vandenberghe W, Jooris B, Moerman I, Demeester P (2010) The w-ilab. t testbed. In: Testbeds and research infrastructures, vol 46, pp 145–154Google Scholar
  11. 11.
    Brélaz D (1979) New methods to color the vertices of a graph. Commun Assoc Comput 22:251–256MathSciNetzbMATHGoogle Scholar
  12. 12.
    Carrano EG, Soares LAE, Takahashi RHC, Saldanha RR, Neto OM (2006) Electric distribution network multiobjective design using a problem-specific genetic algorithm. IEEE Trans Power Delivery 21(2):995–1005.  https://doi.org/10.1109/TPWRD.2005.858779 CrossRefGoogle Scholar
  13. 13.
    Chia Y, Siew Z, Kiring A, Yang S, Teo K (2011) Adaptive hybrid channel assignment in wireless mobile network via genetic algorithm. In: International conference on hybrid intelligent systems, pp 511–516Google Scholar
  14. 14.
    Chiu DM, Jain R (1989) Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks. Comput Netw ISDN Syst 17(1):1–14.  https://doi.org/10.1016/0169-7552(89)90019-6 CrossRefzbMATHGoogle Scholar
  15. 15.
    Croak P, Kim Y (2013) Site Survey Guidelines for WLAN Deployment. Tech. rep., Cisco Systems, IncGoogle Scholar
  16. 16.
    Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9:115–148MathSciNetzbMATHGoogle Scholar
  17. 17.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):181–197CrossRefGoogle Scholar
  18. 18.
    Deus FEG, Puttini RS, Molinaro L, Kabara J, Villalba LJ (2006) Survivable mechanism for IEEE 802.11 WLAN improvements. Lect Notes Comput Sci 5:808–818CrossRefGoogle Scholar
  19. 19.
    Eisenblatter A, Geerdes HF, Gross J, Puñal O, Schweiger J (2010) A two-stage approach to WLAN planning: Detailed performance evaluation along the Pareto frontier. In: Modeling and optimization in mobile, ad hoc and wireless networks (wiopt), 2010, pp 227–236Google Scholar
  20. 20.
    Ekahau Inc, Reston VA, 2016 Ekahau Site Survey, version 8.6 [computer software]. http://www.ekahau.com/wifidesign/ekahau-site-survey
  21. 21.
    Farsi A, Achir N, Boussetta K (2014) WLAN planning: Separate and joint optimization of both access point placement and channel assignment. annals of telecommunications - annales des télécommunications, pp 1–12Google Scholar
  22. 22.
    Frühwirth T, Brisset P (2000) Placing base stations in wireless indoor communication networks. IEEE Intell Syst 15:49–53CrossRefGoogle Scholar
  23. 23.
    Gamal M, Morsy E, Fathy A (2015) Multi-objective transmitters placement problem in wireless networks. In: Proceedings of the sixth international symposium on information and communication technology, soICT 2015. ACM, New York, pp 156–162Google Scholar
  24. 24.
    Garcia E, Vidal R, Paradells J (2005) New algorithm for frequency assignments in IEEE 802.11 wireless networks. In: Proceedings of the European wireless conference, pp 211–217Google Scholar
  25. 25.
    Gast MS (2005) 802.11 Wireless Networks: The Definitive Guide, Second Edition. O’Reilly Media, IncGoogle Scholar
  26. 26.
    Gondran A, Baala O, Caminada A, Mabed H (2007) Joint optimization of access point placement and frequency assignment in WLAN. In: Proceedings of the IEEE/IFIP international conference in central asia, pp 1–5Google Scholar
  27. 27.
    Goudos SK, Plets D, Liu N, Martens L, Joseph W (2015) A multi-objective approach to indoor wireless heterogeneous networks planning based on biogeography-based optimization. Comput Netw 91:564–576CrossRefGoogle Scholar
  28. 28.
    Horst K (2012) Ekahau Site Survey. Dign pressGoogle Scholar
  29. 29.
    Jen Hsu W, Helmy A (2005) IMPACT: Investigation of Mobile-user Patterns Across University Campuses using WLAN Trace Analysis coRR abs/cs/0508009Google Scholar
  30. 30.
    Jebeli MS, Dehghan M (2014) Joint multicast routing and channel assignment in Multiradio Multichannel Wireless Mesh Networks using a multi objective algorithm. In: 2014 6th conference on Information and knowledge technology (IKT), pp 163–170Google Scholar
  31. 31.
    Kouhbor S, Ugon J, Rubinov A, Kruger A, Mammadov M (2006) Coverage in WLAN with minimum number of access points. In: IEEE 63rd Vehicular technology conference, 2006. VTC 2006-spring, pp 1166–1170Google Scholar
  32. 32.
    Kukkonen S, Lampinen J (2005) Gde3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on evolutionary computation, vol 1, pp 443–450Google Scholar
  33. 33.
    Lee JH, Han BJ, Kim YD, Saxena N, Chung T (2009) Optimizing access point allocation using genetic algorithmic approach for smart home enviroments. J Comput 52(8):938–949CrossRefGoogle Scholar
  34. 34.
    Leung K, Kim B (2003) Frequency assignment for IEEE 802.11 wireless networks. In: Proceedings of the IEEE vehicular technology conferenceGoogle Scholar
  35. 35.
    Li H, Zhang Q (2009) Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302.  https://doi.org/10.1109/TEVC.2008.925798 CrossRefGoogle Scholar
  36. 36.
    Lima MP, Alexandre RF, takahashi RHC, Carrano EG (2017) A Comparative Study of Multiobjective Evolutionary Algorithms for Wireless Local Area Network Design. In: IEEE Congress on evolutionary computationGoogle Scholar
  37. 37.
    Lima MP, Carrano EG, Takahashi RHC (2012) Multiobjective planning of wireless local area networks (WLAN) using genetic algorithms. In: IEEE Congress on evolutionary computation, pp 1–8Google Scholar
  38. 38.
    Lima MP, Rodrigues TB, Alexandre RF, Takahashi RHC, Carrano EG (2014) Using evolutionary algorithms for channel assignment in 802.11 networks. In: IEEE Symposium series on computational intelligenceGoogle Scholar
  39. 39.
    Liu N, Plets D, Goudos SK, Martens L, Joseph W (2015) Multi-objective network planning optimization algorithm: human exposure, power consumption, cost, and capacity. Wirel Netw 21(3):841–857CrossRefGoogle Scholar
  40. 40.
    Magedanz T, Gavras A, Nguyen H, Chase J (2010) Testbeds and Research Infrastructures, Development of Networks and Communities: 6th International ICST Conference, TridentCom 2010, Berlin, Germany, May 18-20, 2010, Revised Selected Papers Springer Berlin HeidelbergGoogle Scholar
  41. 41.
    Mahonen P, Riihijarvi J, Petrova M (2007) Frequency allocation for WLANs using graph coloring techniques. Ad Hoc & Sensor Wireless Net 3:121–139Google Scholar
  42. 42.
    Mateus GR, Loureiro AA, Rodrigues RC (2001) Optimal network design for wireless local area network. Oper Res Int Journal 106:331–345MathSciNetzbMATHGoogle Scholar
  43. 43.
    Mishra A, Banerjee S, Arbaugh W (2005) Weighted coloring based channel assignment for WLANs. In: Proceedings of the Mobile computing and communications reviewGoogle Scholar
  44. 44.
    Moreno J, Domingo M, Valle L, Lopez JR, Torres RP, Basterrechea J (2015) Design of Indoor WLANs: combination of a ray-tracing tool with the BPSO method. IEEE Antennas Propag Mag 57(6):22–33CrossRefGoogle Scholar
  45. 45.
    Moura H, Bessa GVC, Vieira MAM, Macedo DF (2015) Ethanol: software defined networking for 802.11 wireless networks IFIP/IEEE international symposium on integrated network management (IM)Google Scholar
  46. 46.
    Nagy L, Farkas L (2000) Indoor base station location optimization using genetic algorithms. In: The 11th IEEE international symposium on personal, indoor and mobile radio communications, pp 843–846Google Scholar
  47. 47.
    Ohatkar S, Bormane D (2013) Channel allocation technique with genetic algorithm for interference reduction in cellular network. In: 2013 annual IEEE of India conference (INDICON), pp 1–6Google Scholar
  48. 48.
    Rappaport TS (2002) Mobile radio propagation: large-scale path loss, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  49. 49.
    Riley GF, Henderson TR (2010) The NS-3 network simulator. In: Wehrle K, Güneş M, Gross J (eds) Modeling and Tools for Network Simulation. 1st edn. SpringerGoogle Scholar
  50. 50.
    Scully T, Brown KN (2009) Wireless LAN load balancing with genetic algorithms. In: Proceedings of the Knowledge based systems, pp 529–534Google Scholar
  51. 51.
    Tarôco CG, Takahashi RHC, Carrano EG (2016) Multiobjective planning of power distribution networks with facility location for distributed generation. Electr Power Syst Res 141:562–571CrossRefGoogle Scholar
  52. 52.
    Vanhatupa T, Hännikäinen M, Hämäläinen TD (2007) Evaluation of throughput estimation models and algorithms for WLAN frequency planning. Comput Netw 51(11):3110–3124CrossRefGoogle Scholar
  53. 53.
    Zhang J, Tan K, Zhao J, Wu H, Zhang Y (2008) A Practical SNR-guided Rate Adaptation. In: INFOCOM. IEEE, pp 2083–2091Google Scholar
  54. 54.
    Zhang Z, Di X, Tian J, Zhu Z (2017) A multi-objective WLAN planning method. In: 2017 International conference on information networking (ICOIN), pp 86–91Google Scholar
  55. 55.
    Zhao W, Nishiyama H, Fadlullah Z, Kato N, Hamaguchi K (2016) DAPA: capacity optimization in wireless networks through a combined design of density of access points and partially overlapped channel allocation. IEEE Trans Veh Technol 65(5):3715–3722CrossRefGoogle Scholar
  56. 56.
    Zheng Y, Baala O, Caminada A (2010) Optimization model for an Indoor WLAN-based Positioning System. In: 2010 international conference on Indoor positioning and indoor navigation (IPIN), pp 1–7Google Scholar
  57. 57.
    Zola E, Barcelo-Arroyo F (2013) Characterizing User Behavior in a European Academic WiFi Network. Int J Handheld Comput Res 4:55–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ComputingUniversidade Federal de Ouro PretoJoão MonlevadeBrazil
  2. 2.Department of Electrical EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Department of MathematicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Computer ScienceUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations