Applied Intelligence

, Volume 48, Issue 2, pp 465–481 | Cite as

An evolutionary non-linear ranking algorithm for ranking scientific collaborations

  • Fahimeh Ghasemian
  • Kamran Zamanifar
  • Nasser Ghasem-Aghaee
Article
  • 407 Downloads

Abstract

The social capital theory motivates some researchers to apply link-based ranking algorithms (e.g. PageRank) to compute the fitness level of a scholar for collaborating with other scholars on a set of skills. These algorithms are executed on the collaboration network of scholars and assign a score to each scholar based on the scores of his/her neighbors by solving a linear system in an iterative way. In this paper, we propose a new ranking algorithm by focusing on link-aggregation function and transition matrix. The evolution strategy technique is applied to find the best aggregation function and transition matrix for computing the score of a scholar in the collaboration network which is modeled by a hypergraph. Experiments conducted on two datasets gathered from ScivalExpert and VIVO show that the new non-linear ranking algorithm acts better than the other iterative ranking approaches for ranking scientific collaborations.

Keywords

Scientific collaboration Hypergraph Ranking algorithm Evolution strategy Collaboration network 

References

  1. 1.
    Abbasi A, Altmann J, Hossain L (2011) Identifying the effects of co-authorship networks on the performance of scholars: a correlation and regression analysis of performance measures and social network analysis measures. Nat Comput 5(4):594–607Google Scholar
  2. 2.
    Abbasi A, Wigand RT, Hossain L Measuring social capital through network analysis and its influence on individual performanceGoogle Scholar
  3. 3.
    Anyanwu K, Maduko A, Sheth A (2005) Semrank: ranking complex relationship search results on the semantic web. In: Proceedings of the 14th international conference on world wide web. ACM, pp 117–127Google Scholar
  4. 4.
    Bäck T, Emmerich M (2002) Evolution strategies for optimisation in engineering applications. In: Proceedings 5th world congress on computational mechanics. CiteseerGoogle Scholar
  5. 5.
    Badar K, Hite JM, Badir YF (2013) Examining the relationship of co-authorship network centrality and gender on academic research performance: the case of chemistry researchers in Pakistan. Scientometrics 94(2):755–775CrossRefGoogle Scholar
  6. 6.
    Beyer HG, Schwefel HP (2002) Evolution strategies–a comprehensive introduction. Nat Comput 1(1):3–52MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bin L, Shuming S, Yunxiao M, Ji-Rong W (2009) Nonlinear algorithms for static-rank computation Technical ReportGoogle Scholar
  8. 8.
    Börner K, Conlon M, Corson-Rikert J, Ding Y (2012) Vivo: a semantic approach to scholarly networking and discovery. Synthesis lectures on the Semantic Web: theory and technology 7(1):1–178Google Scholar
  9. 9.
    Chang YC, Zeyar A (2015) Authorrank: a new scheme for identifying field-specific key researchers. In: Proceedings 8th international conference on information resources management (conf-IRM), pp P01:1–13Google Scholar
  10. 10.
    Cohen J (1992) A power primer. Psychol Bull 112(1):155CrossRefGoogle Scholar
  11. 11.
    Cooke N, Hilton M (2015) Enhancing the effectiveness of team science washington (DC): National academies press (US)Google Scholar
  12. 12.
    Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng Y, Reddivari P, Doshi V, Sachs J (2004) Swoogle: a search and metadata engine for the semantic web. In: Proceedings of the thirteenth ACM international conference on information and knowledge management. ACM, pp 652–659Google Scholar
  13. 13.
    Eslami H, Ebadi A, Schiffauerova A (2013) Effect of collaboration network structure on knowledge creation and technological performance: the case of biotechnology in Canada. Scientometrics 97(1):99–119CrossRefGoogle Scholar
  14. 14.
    Ghasemian F, Zamanifar K, Ghasem-Aqaee N, Contractor N (2016) Toward a better scientific collaboration success prediction model through the feature space expansion. Scientometrics: 1–25Google Scholar
  15. 15.
    Gholamipoor M, Ghadimi P, Alavidoost MH, Feizi Chekab MA (2014) Application of evolution strategy algorithm for optimization of a single-layer sound absorber. Cogent Engineering 1(1):945–820CrossRefGoogle Scholar
  16. 16.
    Gleich DF (2015) Pagerank beyond the web. SIAM Rev 57(3):321–363MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Haveliwala TH (2002) Topic-sensitive pagerank. In: Proceedings of the 11th international conference on world wide web. ACM, pp 517–526Google Scholar
  18. 18.
    Herrero JG, Portas JAB, De Jesús AB, López JMM, de Miguel Vela G, Corredera JRC (2003) Application of evolution strategies to the design of tracking filters with a large number of specifications. EURASIP Journal on Applied Signal Processing 2003:766–779MATHGoogle Scholar
  19. 19.
    Hogan A, Decker S, Harth A (2006) Reconrank: A scalable ranking method for semantic web data with contextGoogle Scholar
  20. 20.
    Hu W, Zou H, Gong Z (2015) Temporal pagerank on social networks. In: International conference on web information systems engineering. Springer, pp 262–276Google Scholar
  21. 21.
    Jing Y, Baluja S (2008) Visualrank: Applying pagerank to large-scale image search. IEEE Trans Pattern Anal Mach Intell 30(11):1877–1890CrossRefGoogle Scholar
  22. 22.
    Kamvar S, Haveliwala T, Manning C, Golub G (2003) Exploiting the block structure of the web for computing pagerank Stanford University Technical ReportGoogle Scholar
  23. 23.
    Kamvar SD, Haveliwala TH, Manning CD, Golub GH (2003) Extrapolation methods for accelerating pagerank computations. In: Proceedings of the 12th international conference on world wide web. ACM, pp 261–270Google Scholar
  24. 24.
    Kim KS, Choi YS (2015) Incremental iteration method for fast pagerank computation. In: Proceedings of the 9th international conference on ubiquitous information management and communication. ACM, p 80Google Scholar
  25. 25.
    Kleinberg JM (1999) Hubs, authorities, and communities. ACM Comput Surv (CSUR) 31(4es):5CrossRefGoogle Scholar
  26. 26.
    Koumoutsakos P, Freund J, Parekh D (1998) Evolution strategies for parameter optimization in jet flow control. In: Proceedings of the summer program, pp 121–132Google Scholar
  27. 27.
    Lappas T, Liu K, Terzi E (2009) Finding a team of experts in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 467–476Google Scholar
  28. 28.
    Li EY, Liao CH, Yen HR (2013) Co-authorship networks and research impact: a social capital perspective. Res Policy 42(9):1515–1530CrossRefGoogle Scholar
  29. 29.
    Liao CH (2011) How to improve research quality? examining the impacts of collaboration intensity and member diversity in collaboration networks. Scientometrics 86(3):747–761CrossRefGoogle Scholar
  30. 30.
    Mbikayi HK (2013) Toward evolution strategies application in automatic polyphonic music transcription using electronic synthesis. arXiv:1304.0969
  31. 31.
    Miguez E, Diaz-Dorado E, Cidras J (1998) An application of an evolution strategy in power distribution system planning. In: IEEE world congress on computational intelligence., the 1998 IEEE international conference on Evolutionary computation proceedings, 1998. IEEE, pp 241–246Google Scholar
  32. 32.
    Mika P, Elfring T, Groenewegen P (2006) Application of semantic technology for social network analysis in the sciences. Scientometrics 68(1):3–27CrossRefGoogle Scholar
  33. 33.
    Nie Z, Zhang Y, Wen JR, Ma WY (2005) Object-level ranking: bringing order to web objects. In: Proceedings of the 14th international conference on world wide web. ACM, pp 567–574Google Scholar
  34. 34.
    Nykl M, Campr M, Ježek K (2015) Author ranking based on personalized pagerank. J Informet 9 (4):777–799CrossRefGoogle Scholar
  35. 35.
    Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: Bringing order to the web. Tech. rep., Stanford InfoLabGoogle Scholar
  36. 36.
    Roa-Valverde AJ, Sicilia MA (2014) A survey of approaches for ranking on the web of data. Inf Retr 17 (4):295–325CrossRefGoogle Scholar
  37. 37.
    Schleyer T, Butler BS, Song M, Spallek H (2012) Conceptualizing and advancing research networking systems. ACM Transactions on Computer-Human Interaction (TOCHI) 19(1):2CrossRefGoogle Scholar
  38. 38.
    Schleyer T, Spallek H, Butler BS, Subramanian S, Weiss D, Poythress ML, Rattanathikun P, Mueller G (2008) Requirements for expertise location systems in biomedical science and the semantic web. In: Proceedings of the 3rd expert finder workshop on personal identification and collaboration: Knowledge mediation and extraction PICKME 2008, pp 31–41Google Scholar
  39. 39.
    Senanayake U, Piraveenan M, Zomaya A (2015) The pagerank-index: Going beyond citation counts in quantifying scientific impact of researchers. PloS one 10(8):e0134,794CrossRefGoogle Scholar
  40. 40.
    Shir OM, Siedschlag C, Bäck T, Vrakking MJ (2005) Niching in evolution strategies and its application to laser pulse shaping. In: International conference on artificial evolution (evolution artificielle). Springer, pp 85–96Google Scholar
  41. 41.
    Sonnenwald DH (2007) Scientific collaboration: a synthesis of challenges and strategies. Annual Review of Information Science and Technology p 643681Google Scholar
  42. 42.
    Stokols D, Hall KL, Taylor BK, Moser RP (2008) The science of team science: overview of the field and introduction to the supplement. Am. J. Prev. Med. 35(2):S77–S89CrossRefGoogle Scholar
  43. 43.
    Tan S, Bu J, Chen C, He X (2011) Using rich social media information for music recommendation via hypergraph model. In: Social media modeling and computing. Springer, pp 213–237Google Scholar
  44. 44.
    Uddin S, Hossain L, Abbasi A, Rasmussen K (2012) Trend and efficiency analysis of co-authorship network. Scientometrics 90(2):687–699CrossRefGoogle Scholar
  45. 45.
    Wei W (2009) Semantic search: Bringing semantic web technologies to information retrieval. Ph.D. thesis, Ph. D. thesis, University of NottinghamGoogle Scholar
  46. 46.
    Wuchty S, Jones BF, Uzzi B (2007) The increasing dominance of teams in production of knowledge. Science 316(5827):1036–1039CrossRefGoogle Scholar
  47. 47.
    Yao L, Wei T, Zeng A, Fan Y, Di Z (2014) Ranking scientific publications: the effect of nonlinearity. Sci Rep 4:6663CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Fahimeh Ghasemian
    • 1
  • Kamran Zamanifar
    • 1
  • Nasser Ghasem-Aghaee
    • 1
  1. 1.Department of Software Engineering, Faculty of Computer EngineeringUniversity of IsfahanIsfahanIran

Personalised recommendations