Abstract
Let \(Q \rightarrow R\) be a surjective homomorphism of Noetherian rings such that Q is Gorenstein and R as a Q-bimodule admits a finite resolution by modules which are projective on both sides. We define an adjoint pair of functors between the homotopy category of totally acyclic R-complexes and that of Q-complexes. This adjoint pair is analogous to the classical adjoint pair of functors between the module categories of R and Q. As a consequence, we obtain a precise notion of approximations of totally acyclic R-complexes by totally acyclic Q-complexes.
This is a preview of subscription content, access via your institution.
References
- 1.
Auslander, M., Bridger, M.: Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence (1969)
- 2.
Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen–Macaulay approximations, (French summary) Colloque en l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. France (N.S.) No. 38, pp. 5–37 (1989)
- 3.
Auslander, M., Reiten, I.: Homologically finite subcategories. In: Representations of Algebras and Related Topics (Kyoto, 1990), London Mathematical Society Lecture Note Series, 168, pp. 1–42. Cambridge University Press, Cambridge (1992)
- 4.
Auslander, M., Smalø, S.O.: Preprojective modules over Artin algebras. J. Algebra 66(1), 61–122 (1980)
- 5.
Avramov, L.L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc. (3) 85(2), 393–440 (2002)
- 6.
Bergh, P.A., Jorgensen, D.A.: A generalized Dade’s lemma for local rings. Algebr. Represent. Theory 21(6), 1369–1380 (2018)
- 7.
Bergh, P.A., Jorgensen, D.A.: Complete intersections and equivalences with categories of matrix factorizations. Homol. Homotopy Appl. 18(2), 377–390 (2016)
- 8.
Bergh, P.A., Jorgensen, D.A., Oppermann, S.: The Gorenstein defect category. Q. J. Math. 66(2), 459–471 (2015)
- 9.
Buchweitz, R.-O.: Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, 155 pp (1987). https://tspace.library.utoronto.ca/handle/1807/16682
- 10.
Christensen, L.W.: Gorenstein Dimensions. Lecture Notes in Mathematics, vol. 1747. Springer, Berlin (2000)
- 11.
Christensen, L.W., Foxby, H.B., Holm, H.: Derived category methods in commutative algebra (in preparation)
- 12.
Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)
- 13.
Dalezios, G., Estrada, S., Holm, H.: Quillen equivalences for stable categories. J. Algebra 501, 130–149 (2018)
- 14.
Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Am. Math. Soc. 260(1), 35–64 (1980)
- 15.
Eisenbud, D., Peeva, I.: Minimal Free Resolutions Over complete Intersections. Lecture Notes in Mathematics, vol. 2152. Springer, Cham (2016)
- 16.
Enochs, E.E.: Injective and flat covers, envelopes and resolvents. Israel J. Math. 39(3), 189–209 (1981)
- 17.
Holm, T., Jørgensen, P.: Triangulated categories: definitions, properties, and examples. In: Triangulated Categories. London Mathematical Society Lecture Note Series, 375, pp. 1–51. Cambridge University Press, Cambridge (2010)
- 18.
Jorgensen, D.A., Şega, L.: Asymmetric complete resolutions and vanishing of ext over Gorenstein rings Internat. Math. Res. Notices 56, 3459–3477 (2005)
- 19.
Krause, H.: Approximations and adjoints in homotopy categories. Math. Ann. 353(3), 765–781 (2012)
- 20.
Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141(5), 1128–1162 (2005)
- 21.
Lindokken, S.: Private communication
- 22.
Neeman, A.: Triangulated categories. Annals of Mathematics Studies, 148. Princeton University Press, Princeton (2001)
- 23.
Neeman, A.: Some adjoints in homotopy categories. Ann. Math. (2) 171(3), 2143–2155 (2010)
- 24.
Oppermann, S., Psaroudakis, C., Stai, T.: Change of rings and singularity categories. Adv. Math. 350, 190–241 (2019)
- 25.
Orlov, D.: Triangulated categories of singularities and D-branes in Landau–Ginzburg models (in Russian) Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh., 240–262; translation in Proc. Steklov Inst. Math. 246 (2004), no. 3, 227–248
- 26.
Steele, N.: Support and rank varieties of totally acyclic complexes. arXiv:1603.02731
- 27.
Veliche, O.: Gorenstein projective dimension for complexes. Trans. Am. Math. Soc. 358(3), 1257–1283 (2006)
- 28.
Zheng, Y., Huang, Z.: Triangulated equivalences involving Gorenstein projective modules. Can. Math. Bull. 60(4), 879–890 (2017)
Acknowledgements
The authors would like to thank the anonymous referee for multiple useful comments.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Communicated by Henning Krause.
Rights and permissions
About this article
Cite this article
Bergh, P.A., Jorgensen, D.A. & Moore, W.F. Totally Acyclic Approximations. Appl Categor Struct (2021). https://doi.org/10.1007/s10485-021-09633-1
Received:
Accepted:
Published:
Keywords
- Totally acyclic complex
- Approximation
- Adjoint functors
Mathematics Subject Classification
- 16E05
- 18G80
- 16E65