Abelian Categories Arising from Cluster Tilting Subcategories


For a triangulated category \({\mathcal {T}}\), if \({\mathcal {C}}\) is a cluster-tilting subcategory of \({\mathcal {T}}\), then the factor category \({\mathcal {T}}{/}{\mathcal {C}}\) is an abelian category. Under certain conditions, the converse also holds. This is a very important result of cluster-tilting theory, due to Koenig–Zhu and Beligiannis. Now let \({\mathcal {B}}\) be a suitable extriangulated category, which is a simultaneous generalization of triangulated categories and exact categories. We introduce the notion of pre-cluster tilting subcategory \({\mathcal {C}}\) of \({\mathcal {B}}\), which is a generalization of cluster tilting subcategory. We show that \({\mathcal {C}}\) is cluster tilting if and only if the factor category \({\mathcal {B}}{/}{\mathcal {C}}\) is abelian. Our result generalizes the related results on a triangulated category and is new for an exact category case.

This is a preview of subscription content, log in to check access.


  1. 1.

    Beligiannis, A.: Rigid objects, triangulated subfactors and abelian localizations. Math. Z. 20(274), 841–883 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Demonet, L., Liu, Y.: Quotients of exact categories by cluster tilting subcategories as module categories. J. Pure Appl. Algebra 217(12), 2282–2297 (2013)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Iyama, O.: Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Adv. Math. 210, 22–50 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Iyama, O., Solberg, Ø.: Auslander–Gorenstein algebras and precluster tilting. Adv. Math. 326, 200–240 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172(1), 117–168 (2008)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Koenig, S., Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z. 258(1), 143–160 (2008)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Liu, Y., Nakaoka, H.: Hearts of twin cotorsion pairs on extriangulated categories. J. Algebra 528, 96–149 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Nakaoka, H.: General heart construction on a triangulated category (I): unifying \(t\)-structures and cluster tilting subcategories. Appl. Categ. Struct. 19(6), 879–899 (2011)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60(2), 117–193 (2019)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Zhou, P., Zhu, B.: Triangulated quotient categories revisited. J. Algebra 502, 196–232 (2018)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank the referee for reading the paper carefully and for many suggestions on mathematics and English expressions.

Author information



Corresponding author

Correspondence to Panyue Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Panyue Zhou: The authors wish to thank Professor Bin Zhu for his helpful advices.

Yu Liu is supported by the Fundamental Research Funds for the Central Universities (Grants No. 2682018ZT25) and the National Natural Science Foundation of China (Grants No. 11901479). Panyue Zhou is supported by the Hunan Provincial Natural Science Foundation of China (Grants No. 2018JJ3205) and the National Natural Science Foundation of China (Grants Nos. 11901190 and 11671221), and by the Scientific Research Fund of Hunan Provincial Education Department (Grants No. 19B239).

Communicated by Wendy Lowen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, P. Abelian Categories Arising from Cluster Tilting Subcategories. Appl Categor Struct 28, 575–594 (2020). https://doi.org/10.1007/s10485-019-09590-w

Download citation


  • Extriangulated categories
  • Cluster tilting subcategories
  • Abelian categories

Mathematics Subject Classification

  • 18E30
  • 18E10