Meet-Semilattice Congruences on a Frame

Article
  • 3 Downloads

Abstract

The congruence lattice of a frame has long been an object of considerable interest, not least because it turns out to be a frame itself. Perhaps more surprisingly congruence lattices of, for instance, \(\sigma \)-frames, \(\kappa \)-frames and some partial frames also turn out to be frames. The situation for congruences of a meet-semilattice is notably different. In this paper we analyze the meet-semilattice congruence lattices of arbitrary frames and compare them with the corresponding lattices of frame congruences. In the course of this, we provide a structure theorem as well as many examples and counter-examples.

Keywords

Complete lattice Frame Partial frame \(\mathcal {S}\)-frame Frame congruence Meet-semilattice congruence Complements 

Mathematics Subject Classification

06B10 06D22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)MATHGoogle Scholar
  2. 2.
    Banaschewski, B.: Another look at the localic Tychonoff theorem. Comment. Math. Univ. Carolinae 29(4), 647–656 (1988)MathSciNetMATHGoogle Scholar
  3. 3.
    Banaschewski, B.: Lectures on Frames. University of Cape Town, Cape Town (1988)MATHGoogle Scholar
  4. 4.
    Banaschewski, B.: \(\sigma \)-frames, unpublished manuscript. http://mathcs.chapman.edu/CECAT/members/Banaschewski_publications.html (1980). Accessed 25 Nov 2017
  5. 5.
    Banaschewski, B., Gilmour, C.R.A.: Realcompactness and the cozero part of a frame. Appl. Categ. Struct. 9, 395–417 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Erné, M., Zhao, D.: Z-join spectra of Z-supercompactly generated lattices. Appl. Categ. Struct. 9(1), 41–63 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Escardó, M.H.: Joins in the frame of nuclei. Appl. Categ. Struct. 11, 117–124 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Frith, J.L.: Structured frames. Ph.D. Thesis, University of Cape Town (1987)Google Scholar
  9. 9.
    Frith, J., Schauerte, A.: An asymmetric characterization of the congruence frame. Topol. Appl. 158(7), 939–944 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (I). Categ. Gen. Alg. Struct. Appl. 2(1), 1–21 (2014)MATHGoogle Scholar
  11. 11.
    Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (II). Categ. Gen. Alg. Struct. Appl. 2(1), 23–35 (2014)MATHGoogle Scholar
  12. 12.
    Frith, J., Schauerte, A.: The Stone–Čech compactification of a partial frame via ideals and cozero elements. Quaest. Math. 39(1), 115–134 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Frith, J., Schauerte, A.: Completions of uniform partial frames. Acta Math. Hung. 147(1), 116–134 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Frith, J., Schauerte, A.: Coverages give free constructions for partial frames. Appl. Categ. Struct 25(3), 303–321 (2017)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Frith, J., Schauerte, A.: Compactifications of partial frames via strongly regular ideals. Math. Slovaca (2016, accepted)Google Scholar
  16. 16.
    Frith, J., Schauerte, A.: One-point compactifications and continuity for partial frames. Categ. Gen. Algebr. Struct. Appl. 7, 57–88 (2017)MathSciNetMATHGoogle Scholar
  17. 17.
    Frith, J., Schauerte, A.: The congruence frame and the Madden quotient for partial frames (submitted) Google Scholar
  18. 18.
    Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)MATHGoogle Scholar
  20. 20.
    Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck, vol. 309. American Mathematical Society, Providence (1984)MATHGoogle Scholar
  21. 21.
    Klinke, O.: A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure. Algebra Universalis 71, 55–64 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)CrossRefMATHGoogle Scholar
  23. 23.
    Madden, J.J.: \(\kappa \)-frames. J. Pure Appl. Algebra 70, 107–127 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Papert, D.: Congruence relations in semi-lattices. J. Lond. Math. Soc. 39, 723–729 (1964)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Paseka, J.: Covers in generalized frames. In: Chajda, I. et al. (eds.) General Algebra and Ordered Sets (Horni Lipova 1994), pp. 84–99. Palacky University Olomouc, Olomouc.Google Scholar
  26. 26.
    Picado, J., Pultr, A.: Frames and Locales. Springer, Basel (2012)CrossRefMATHGoogle Scholar
  27. 27.
    Plewe, T.: Higher order dissolutions and Boolean coreflections of locales. J. Pure Appl. Algebra 154, 273–293 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168, 309–326 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Simmons, H.: A framework for topology. Stud. Logic Found. Math. 96, 239–251 (1978)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Simmons, H.: Spaces with Boolean assemblies. Colloq. Math. 43, 23–39 (1980)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zenk, E.R.: Categories of partial frames. Algebra Univers. 54, 213–235 (2005)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Zhao, D.: Nuclei on \(Z\)-frames. Soochow J. Math. 22(1), 59–74 (1996)MathSciNetMATHGoogle Scholar
  33. 33.
    Zhao, D.: On projective \(Z\)-frames. Can. Math. Bull. 40(1), 39–46 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations