Applied Psychophysiology and Biofeedback

, Volume 42, Issue 1, pp 1–12 | Cite as

Effects of Acute Stress on Decision Making

  • Stephanie E. Wemm
  • Edelgard Wulfert


The study examined the effects of a social stressor (Trier Social Stress Test) on 24 male and 32 female college students’ affective and physiological reactivity and their subsequent performance on a decision-making task (Iowa Gambling Task). The 56 participants were randomly assigned to a social stressor or a control condition. Compared to controls, participants in the stress condition responded with higher heart rates and skin conductance responses, reported more negative affect, and on the decision-making task made less advantageous choices. An exploratory regression analysis revealed that among men higher levels of heart rate were positively correlated with riskier choices on the Iowa Gambling Task, whereas for women this relationship was curvilinear. Exploratory correlational analyses showed that lower levels of skin conductance within the stress condition were associated with greater levels of substance use and gambling. The results suggest that the presence of a stressor may generally result in failure to attend to the full range of possible consequences of a decision. The relationship pattern between the degree of stress responding and successful decision making may be different for men and women.


Stress Decision making Heart rate Skin conductance Gender Trier social stress test Iowa gambling task 


Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest.


  1. Bechara, A., Damasio, A., Damasio, H., & Anderson, S. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 7–15. doi: 10.1016/0010-0277(94)90018-3.CrossRefPubMedGoogle Scholar
  2. Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain: A Journal of Neurology, 123(11), 2189–2202. doi: 10.1093/brain/123.11.2189.CrossRefGoogle Scholar
  3. Benedek, M., & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190, 80–91.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burdick, J. D., Roy, A. L., & Raver, C. C. (2013). Evaluating the Iowa Gambling Task as a direct assessment of impulsivity with low-income children. Personality and individual differences, 55(7), 771–776.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carlson, S. M., Zayas, V., & Guthormsen, A. (2009). Neural correlates of decision making on a gambling task. Child development, 80(4), 1076–1096.CrossRefPubMedGoogle Scholar
  6. Clark, L., & Robbins, T. (2002). Decision-making deficits in drug addiction. Trends in Cognitive Sciences, 6(9), 361. doi: 10.1016/s1364-6613(02)01960-5.CrossRefPubMedGoogle Scholar
  7. CORE Institute (2004). National Reference Group: Cross- Tabulation. Carbondale, IL: Core Institute.Google Scholar
  8. Critchley, H., Elliott, R., Mathias, C., & Dolan, R. (2000). Neural activity relating to generation and representation of galvanic skin conductance responses: A functional magnetic resonance imaging study. The Journal of Neuroscience, 20(8), 3033–3040.PubMedGoogle Scholar
  9. Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and the human brain. New York: Putnam.Google Scholar
  10. Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The Electrodermal System. In J. T. Cacioppo, L. G. Tassinary, & G. G. Bernston (Eds.), Handbook of psychophysiology (pp. 159–223), New York, NY: Cambridge University.Google Scholar
  11. Dunn, B., Dalgleish, T., & Lawrence, A. (2006). The somatic marker hypothesis: A critical evaluation. Neuroscience and Biobehavioral Reviews, 30(2), 239–271. doi: 10.1016/j.neubiorev.2005.07.001.CrossRefPubMedGoogle Scholar
  12. Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap, London: Chapman and Hall.CrossRefGoogle Scholar
  13. Eysenck, M. W. (1975). Effects of noise, activation level, and response dominance on retrieval from semantic memory. Journal of Experimental Psychology: Human Learning and Memory, 1(2), 143.Google Scholar
  14. Eysenck, M. W. (1975). Extraversion, arousal, and speed of retrieval from secondary storage1. Journal of Personality, 43(3), 390–401.CrossRefPubMedGoogle Scholar
  15. Gansler, D. A., Jerram, M. W., Vannorsdall, T. D., & Schretlen, D. J. (2011). Does the Iowa Gambling Task measure executive funciton? Archives of Clinical Neuropsychology, 26(8), 706–717.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Goudriaan, A., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cognitive Brain Research, 23(1), 137–151. doi: 10.1016/j.cogbrainres.2005.01.017.CrossRefPubMedGoogle Scholar
  17. Goudriaan, A., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2006). Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug and Alcohol Dependence, 84(3), 231–239. doi: 10.1016/j.drugalcdep.2006.02.007.CrossRefPubMedGoogle Scholar
  18. Gullo, M. J., & Stieger, A. A. (2011). Anticipatory stress restores decision-making deficits in heavy drinkers by increasing sensitivity to losses. Drug and Alcohol Dependence, 117(2), 204–210.CrossRefPubMedGoogle Scholar
  19. Heaney, J., Ginty, A., Carroll, D., & Phillips, A. (2011). Preliminary evidence that exercise dependence is associated with blunted cardiac and cortisol reactions to acute psychological stress. International Journal of Psychophysiology, 79(2), 323–329. doi: 10.1016/j.ijpsycho.2010.11.010.CrossRefPubMedGoogle Scholar
  20. Hooper, C. J., Luciana, M., Conklin, H. M., & Yarger, R. S. (2004). Adolescents’ performance on the Iowa Gambling Task: Implications for the development of decision making and ventromedial prefrontal cortex. Developmental Psychology, 40(6), 1148.CrossRefPubMedGoogle Scholar
  21. Kelly, M. M., Tyrka, A. R., Anderson, G. M., Price, L. H., & Carpenter, L. L. (2008). Sex differences in emotional and physiological responses to the Trier Social Stress Test. Journal of Behavior Therapy and Experimental Psychiatry, 39(1), 87–98.CrossRefPubMedGoogle Scholar
  22. Kirschbaum, C., Pirke, K., & Hellhammer, D. (1993). The ‘Trier Social Stress Test’: A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1–2), 76–81.PubMedGoogle Scholar
  23. Kudielka, B. M., Hellhammer, D. H., & Kirschbaum, C. (2007). Ten Years of Research with the Trier Social Stress Test–Revisited. In E. H.-J. P. Winkielman (Ed.), Social neuroscience: Integrating biological and psychological explanations of social behavior (pp. 56–83). New York, NY: Guilford Press.Google Scholar
  24. Lawrence, A., Luty, J., Bogdan, N., Sahakian, B., & Clark, L. (2009). Problem gamblers share deficits in impulsive decision-making with alcohol-dependent individuals. Addiction (Abingdon, England), 104(6), 1006–1015. doi: 10.1111/j.1360-0443.2009.02533.x.CrossRefGoogle Scholar
  25. Mather, M., & Lighthall, N. (2012). Both risk and reward are processed differently in decisions made under stress. Current Directions in Psychological Science, 21(2), 36–41. doi: 10.1177/0963721411429452.CrossRefPubMedPubMedCentralGoogle Scholar
  26. McEwen, B. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583(2–3), 174–185. doi: 10.1016/j.ejphar.2007.11.071.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nagai, Y., Critchley, H. D., Featherstone, E., Trimble, M. R., & Dolan, R. J. (2004). Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: A physiological acount of a “default mode” of brain function. NeuroImage, 22, 243–251.CrossRefPubMedGoogle Scholar
  28. Pabst, S., Brand, M., & Wolf, O. T. (2013). Stress and decision making: A few minutes make all the difference. Behavioral Brain Research, 250, 39–45.CrossRefGoogle Scholar
  29. Paris, J., Franco, C., Sodano, R., Frye, C., & Wulfert, E. (2010). Gambling pathology is associated with dampened cortisol response among men and women. Physiology and Behavior, 99(2), 230–233. doi: 10.1016/j.physbeh.2009.04.002.CrossRefPubMedGoogle Scholar
  30. Presley, C. A., Meilman, P. W., Cashin, J. R., & Lyerla, R. (1993). Alcohol and drugs on American college campuses: Use, consequences, and perceptions of the campus environment: Volume I: 1989–91. Carbondale, IL: Southern Illinois University.Google Scholar
  31. Presley, C. A., Meilman, P. W., & Lyerla, R. (1994). Development of the Core Alcohol and Drug Survey: Initial findings and future directions. Core Institute, Southern Illinois University. Journal of American College Health, 42(6), 248–255.CrossRefPubMedGoogle Scholar
  32. Preston, S., Buchanan, T., Stansfield, R., & Bechara, A. (2007). Effects of anticipatory stress on decision making in a gambling task. Behavioral Neuroscience, 121(2), 257–263. doi: 10.1037/0735-7044.121.2.257.CrossRefPubMedGoogle Scholar
  33. Shaffer, H. J., LaPlante, D. A., LaBrie, R. A., Kidman, R. C., Donato, A. N., & Stanton, M. V. (2004). Toward a syndrome model of addiction: Multiple expressions, common etiology. Harvard Review of Psychiatry, 12(6), 367–374.CrossRefPubMedGoogle Scholar
  34. Sherwood, L. (2004). The Peripheral Nervous System: Efferent Division. In Human physiology: From cells to systems (8th edn., pp. 239–256). Belmont, CA; Cengage Learning.Google Scholar
  35. Shurman, B., Horan, W. P., & Nuechterlein, K. H. (2005). Schizophrenia patients demonstrate a distinctive pattern of decision-making impairment on the Iowa Gambling Task. Schizophrenia Research. doi: 10.1016/j.schres.2004.03.020.PubMedGoogle Scholar
  36. Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105–130. doi: 10.1196/annals.1441.030.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sinha, R. (2009). Stress and addiction: A dynamic interplay of genes, environment, and drug intake. Biological Psychiatry, 66(2), 100–101. doi: 10.1016/j.biopsych.2009.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sinha, R., Fox, H., Hong, K., Bergquist, K., Bhagwagar, Z., & Siedlarz, K. (2009). Enhanced negative emotion and alcohol craving, and altered physiological responses following stress and cue exposure in alcohol dependent individuals. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(5), 1198–1208. doi: 10.1038/npp.2008.78.CrossRefGoogle Scholar
  39. Sinha, R., Fox, H. C., Hong, K. I. A., Hansen, J., Tuit, K., & Kreek, M. J. (2011). Effects of adrenal sensitivity, stress-and cue-induced craving, and anxiety on subsequent alcohol relapse and treatment outcomes. Archives of General Psychiatry, 68(9), 942–952.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Starcke, K., & Brand, M. (2012). Decision making under stress: A selective review. Neuroscience and Biobehavioral Reviews, 36(4), 1228–1248. doi: 10.1016/j.neubiorev.2012.02.003.CrossRefPubMedGoogle Scholar
  41. Steingroever, H., Wetzels, R., Horstmann, A., Neumann, J., & Wagenmakers, E. J. (2013). Performance of healthy participants on the Iowa Gambling Task. Psychological Assessment, 25(1), 180.CrossRefPubMedGoogle Scholar
  42. Tabachnick, B. G., & Fidell, L. S. (2013). Using Multivariate Statistics (6th edn.). Boston: Allyn and Bacon.Google Scholar
  43. Thayer, J., & Lane, R. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 33(2), 81–88. doi: 10.1016/j.neubiorev.2008.08.004.CrossRefPubMedGoogle Scholar
  44. Thomas, S., Bacon, A., Sinha, R., Uhart, M., & Adinoff, B. (2012). Clinical laboratory stressors used to study alcohol-stress relationships. Alcohol Research-Current Reviews, 34(4), 459–467.PubMedPubMedCentralGoogle Scholar
  45. Turpin, G., & Grandfield, T. (2009). Electrodermal Activity. In G. Fink (Ed.), Stress Science: Neuroendocrinology (1st edn., pp. 313–316), London: Academic Press.Google Scholar
  46. van den Bos, R., Harteveld, M., & Stoop, H. (2009). Stress and decision-making in humans: Performance is related to cortisol reactivity, albeit differently in men and women. Psychoneuroendocrinology, 34(10), 1449–1458. doi: 10.1016/j.psyneuen.2009.04.016.CrossRefPubMedGoogle Scholar
  47. Verdejo-Garcia, A., Benbrook, A., Funderburk, F., David, P., Cadet, J.-L., & Bolla, K. (2007). The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa Gambling Task. Drug and Alcohol Dependence, 90(1), 2–11. doi: 10.1016/j.drugalcdep.2007.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Watson, D., Clark, L., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070.CrossRefPubMedGoogle Scholar
  49. Wemm, S., Fanean, A., Baker, A., Blough, E., Mewaldt, S., & Bardi, M. (2013). Problematic drinking and physiological responses among female college students. Alcohol (Fayetteville, N. Y.), 47(2), 149–157. doi: 10.1016/j.alcohol.2012.12.006.CrossRefGoogle Scholar
  50. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations