Skip to main content
Log in

Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the non-Newtonian behavior, a Maxwell viscoelasticity-based micropolar is considered. Moreover, a porous medium saturates the stretching sheet. A set of similarity variables is introduced to derive the dimensionless ordinary differential equations of velocity, concentration, and temperature profiles. The numerical solution is computed by using the MATLAB bvp4c package. The salient flow features of velocity, concentration, and temperature profiles are described and discussed through various graphs. It is observed that with an increase in the slip parameter, the micro-rotation velocity also increases. The temperature of nanoparticles gets maximum values by varying the viscoelastic parameter and the porosity parameter while an opposite trend is noted for the micro-rotation parameter. The local Nusselt number and the local Sherwood number increase by increasing the viscoelastic parameter, the porosity parameter, and the slip velocity parameter. The graphical computation is performed for a specified range of parameters, such as 0 ⩽ M ⩽ 2.5, 0 ⩽ σm ⩽ 2.5, 0 ⩽ K1 ⩽ 1.5, 0.5 ⩽ Pr ⩽ 3.0, 0 ⩽ σ ⩽ 1.5, 0.5 ⩽ Sc ⩽ 2.0,0.2 ⩽ Nb ⩽ 0.8, and 0.2 ⩽ Nt ⩽ 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u, v :

velocity components

β :

relaxation parameter

μ :

dynamic viscosity

ρ :

density of fluid

ν :

viscosity

σ*:

Stefan-Boltzmann constant

φ :

permeability of porous medium

k*:

absorption/generation constant

j :

micro-inertia per unit mass

N :

micro-angular velocity

l :

positive constant

γ :

spin-gradient viscosity

α :

thermal diffusivity

(ρc)f :

heat capacitance of liquid

(ρc)p :

effective heat capacitance of nanoparticles

Q :

volume fraction

D T :

thermophoretic coefficient

D B :

Brownian diffusivity

k c :

chemical reaction parameter

M :

Hartmann number

ψ :

stream function

η :

dimensionless coordinate

σ m :

viscoelastic parameter

K 1 :

porosity parameter

Pr :

Prandtl number

θ :

dimensionless temperature profile

ϕ :

concentration profile

σ :

slip velocity parameter

R :

local micro-angular velocity

Sc :

Schmidt number

N b :

Brownian movement parameter

N t :

thermophoresis parameter

Nu x :

local Nusselt number

Re :

local Reynolds number

Sh x :

local Sherwood number.

References

  1. ERINGEN, A. C. Microcontinuum Field Theories, Vols. I, II, Springer, New York (2001)

    MATH  Google Scholar 

  2. ERINGEN, A. C. Simple micro fluids. International Journal of Engineering Science, 2, 205–217 (1964)

    Article  MathSciNet  Google Scholar 

  3. ERINGEN, A. C. Theory of micropolar fluid. Journal of Mathematics and Mechanics, 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  4. ERINGEN, A. C. Theory of thermomicro fluids. Journal of Mathematical Analysis and Applications, 38, 480–496 (1972)

    Article  Google Scholar 

  5. ZUBAIR, M., WAQAS, M., HAYAT, T., AYUB, M., and ALSAEDI, A. The onset of modified Fourier and Fick’s theories in temperature dependent conductivity flow of micropolar liquid. Results in Physics, 7, 3145–3152 (2017)

    Article  Google Scholar 

  6. ASHRAF, M. and WEHGAL, A. R. MHD flow and heat transfer of a micropolar fluid between two porous disks. Applied Mathematics and Mechanics (English Edition), 33(1), 51–64 (2012) https://doi.org/10.1007/s10483-012-1533-6

    Article  MathSciNet  Google Scholar 

  7. HAYAT, T., FAROOQ, S., AHMAD, B., and ALSAEDI, A. Homogeneous-heterogeneous reactions and heat source/sink effects in MHD peristaltic flow of micropolar fluid with Newtonian heating in a curved channel. Journal of Molecular Liquids, 223, 469–488 (2016)

    Article  Google Scholar 

  8. WAQAS, M., FAROOQ, M., KHAN, M. I., ALSEDI, A., HAYAT, T., and YASMEEN, T. Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. International Journal of Heat and Mass Transfer, 102, 766–772 (2016)

    Article  Google Scholar 

  9. SHEHZAD, S. A., WAQAS, M., ALSAEDI, A., and HAYAT, T. Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid with convective boundary condition. Journal of Applied Fluid Mechanics, 9, 1437–1445 (2016)

    Article  Google Scholar 

  10. SUI, J. Z., ZHAO, P., CHENG, Z. D., ZHENG, L. C., and ZHANG, X. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Physics of Fluids, 29, 023105 (2017)

    Article  Google Scholar 

  11. TURKYILMAZOGLU, M. Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions. International Journal of Heat and Mass Transfer, 106, 127–134 (2017)

    Article  Google Scholar 

  12. TURKYILMAZOGLU, M. Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. International Journal of Non-Linear Mechanics, 83, 59–64 (2016)

    Article  Google Scholar 

  13. SALEEM, M., HOSSAIN, M. A., and SAHA, S. C. Mixed convection flow of micropolar fluid in an open ended arc-shape cavity. Journal of Fluids Engineering-Transactions of ASME, 134, 091101 (2012)

    Article  Google Scholar 

  14. SUI, J., ZHAO, P., CHENG, Z., and DOI, M. Influence of particulate thermophoresis on convection heat and mass transfer in a slip flow of a viscoelasticity-based micropolar fluid. International Journal of Heat and Mass Transfer, 119, 40–51 (2018)

    Article  Google Scholar 

  15. DING, Z., JIAN, Y., and YANG, L. Time periodic electroosmotic flow of micropolar fluids through microparallel channel. Applied Mathematics and Mechanics (English Edition), 37(6), 769–786 (2016) https://doi.org/10.1007/s10483-016-2081-6

    Article  MathSciNet  Google Scholar 

  16. CAO, L., SI, X., and ZHENG, L. The flow of a micropolar fluid through a porous expanding channel: a Lie group analysis. Applied Mathematics and Computation, 270, 242–250 (2015)

    Article  MathSciNet  Google Scholar 

  17. ANWAR, M. I., SHAFIE, S., HAYAT, T., SHEHZAD, S. A., and SALLEH, M. Z. Numerical study for MHD stagnation-point flow of a micropolar nanofluid towards a stretching sheet. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 89–100 (2107)

    Article  Google Scholar 

  18. ALI, N., KHAN, S. U., ABBAS, Z., and SAJID, M. Slip effects in the hydromagnetic flow of a viscoelastic fluid through porous medium over a porous oscillatory stretching sheet. Journal of Porous Media, 20, 249–262 (2017)

    Article  Google Scholar 

  19. REDDY, G. J., RAJU, R. S., and RAO, J. A. Thermal diffusion and diffusion thermo impact on chemical reacted MHD free convection from an impulsively started infinite vertical plate embedded in a porous medium using FEM. Journal of Porous Media, 20, 1097–1117 (2018)

    Article  Google Scholar 

  20. KHAN, A., KHAN, I., KHAN, A., and SHAFIE, S. Heat transfer analysis in MHD flow of Casson fluid over a vertical plate embedded in a porous medium with arbitrary wall shear stress. Journal of Porous Media, 21, 739–748 (2018)

    Article  Google Scholar 

  21. SHEIKHOLESLAMI, M. and SHEHZAD, S. A. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. International Journal of Heat and Mass Transfer, 122, 1264–1271 (2018)

    Article  Google Scholar 

  22. SINGH, V. and AGARWAL, S. MHD flow and heat transfer for Maxwell fluid over an exponentially stretching sheet with variable thermal conductivity in porous medium. Thermal Science, 18, S599–S615 (2014)

    Article  Google Scholar 

  23. RAUF, A., ABBAS, Z., SHEHZAD, S. A., and MUSHTAQ, T. Thermally radiative viscous fluid flow over a curved stretching surface in non-Darcy porous medium. Communications in Theoretical Physics, 71, 259–266 (2019)

    Article  MathSciNet  Google Scholar 

  24. CHOI, S. Enhancing thermal conductivity of fluids with nanoparticle. Development and Applications of Non-Newtonian Flow, 66, 99–105 (1995)

    Google Scholar 

  25. ZHU, J., ZHENG, L., ZHENG, L., and ZHANG, X. Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction. Applied Mathematics and Mechanics (English Edition), 36(9), 1131–1146 (2015) https://doi.org/10.1007/s10483-015-1977-6

    Article  MathSciNet  Google Scholar 

  26. KHAN, S. U., SHEHZAD, S. A., and ALI, N. Interaction of magneto-nanoparticles in Williamson fluid flow over convective oscillatory moving surface. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 195 (2018)

    Article  Google Scholar 

  27. KHAN, M., MALIK, R., MUNIR, A., and KHAN, W. A. Flow and heat transfer to Sisko nanofluid over a nonlinear stretching sheet. PLoS One, 10, e0125683 (2015)

    Article  Google Scholar 

  28. SHEIKHOLESLAMI, M. Investigation of Coulomb force effects on ethylene glycol based nanofluid laminar flow in a porous enclosure. Applied Mathematics and Mechanics (English Edition), 39(9), 1341–1352 (2018) https://doi.org/10.1007/s10483-018-2366-9

    Article  MathSciNet  Google Scholar 

  29. USMAN, M., SOOMRO, F. A., HAQ, R. U., WANG, W., and DEFTERLI, O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. International Journal of Heat and Mass Transfer, 122, 1255–1263 (2018)

    Article  Google Scholar 

  30. ROUT, B. C. and MISHRA, S. R. Thermal energy transport on MHD nanofluid flow over a stretching surface: a comparative study. Engineering Science and Technology: An International Journal, 21, 60–69 (2018)

    Google Scholar 

  31. SHEIKHOLESLAMI, M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. Journal of Molecular Liquids, 249, 921–929 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Additional information

Citation: WAQAS, H., IMRAN, M., KHAN, S. U., SHEHZAD, S. A., and MERAJ, M. A. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study. Applied Mathematics and Mechanics (English Edition), 40(9), 1255–1268 (2019) https://doi.org/10.1007/s10483-019-2518-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, H., Imran, M., Khan, S.U. et al. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study. Appl. Math. Mech.-Engl. Ed. 40, 1255–1268 (2019). https://doi.org/10.1007/s10483-019-2518-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2518-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation