Skip to main content

Advertisement

Log in

Path integral solution of vibratory energy harvesting systems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A transition Fokker-Planck-Kolmogorov (FPK) equation describes the procedure of the probability density evolution whereby the dynamic response and reliability evaluation of mechanical systems could be carried out. The transition FPK equation of vibratory energy harvesting systems is a four-dimensional nonlinear partial differential equation. Therefore, it is often very challenging to obtain an exact probability density. This paper aims to investigate the stochastic response of vibration energy harvesters (VEHs) under the Gaussian white noise excitation. The numerical path integration method is applied to different types of nonlinear VEHs. The probability density function (PDF) from the transition FPK equation of energy harvesting systems is calculated using the path integration method. The path integration process is introduced by using the Gauss-Legendre integration scheme, and the short-time transition PDF is formulated with the short-time Gaussian approximation. The stationary probability densities of the transition FPK equation for vibratory energy harvesters are determined. The procedure is applied to three different types of nonlinear VEHs under Gaussian white excitations. The approximately numerical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulation (MCS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAQAQ, M. F., MASANA, R., ERTURK, A., and QUINN, D. D. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Applied Mechanics Reviews, 66, 040801 (2014)

    Article  Google Scholar 

  2. ELVIN, N. and ERTURK, A. Advances in Energy Harvesting Methods, Springer, New York (2013)

    Book  Google Scholar 

  3. WANG, H. R., XIE, J. M., XIE, X., HU, Y. T., and WANG, J. Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode. Applied Mathematics and Mechanics (English Edition), 35, 229–236 (2014) https://doi.org/10.1007/s10483-014-1786-6

    Article  MathSciNet  Google Scholar 

  4. HAJHOSSEINI, M. and RAFEEYAN, M. Modeling and analysis of piezoelectric beam with periodically variable cross-sections for vibration energy harvesting. Applied Mathematics and Mechanics (English Edition), 37, 1053–1066 (2016) https://doi.org/10.1007/s10483-016-2117-8

    Article  MathSciNet  MATH  Google Scholar 

  5. LI, X., ZHANG, Y. W., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition), 38, 1019–1030 (2017) https://doi.org/10.1007/s10483-017-2220-6

    Article  MathSciNet  Google Scholar 

  6. COTTONE, F., VOCCA, H., and GAMMAITONI, L. Nonlinear energy harvesting. Physical Review Letters, 102, 080601 (2009)

    Article  Google Scholar 

  7. DAQAQ, M. F. Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. Journal of Sound and Vibration, 330, 2554–2564 (2011)

    Article  Google Scholar 

  8. GREEN, P. L., WORDEN, K., ATALLAH, K., and SIMS, N. D. The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. Journal of Sound and Vibration, 331, 4504–4517 (2012)

    Article  Google Scholar 

  9. DAQAQ, M. F. On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dynamics, 69, 1063–1079 (2012)

    Article  Google Scholar 

  10. MASANA, R. and DAQAQ, M. F. Response of Duffing-type harvesters to band-limited noise. Journal of Sound and Vibration, 332, 6755–6767 (2013)

    Article  Google Scholar 

  11. HE, Q. F. and DAQAQ, M. F. Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. Journal of Sound and Vibration, 33, 3479–3489 (2014)

    Article  Google Scholar 

  12. HE, Q. F. and DAQAQ, M. F. New insights into utilizing bistability for energy harvesting under white noise. Journal of Vibration and Acoustics, 137, 021009 (2015)

    Article  Google Scholar 

  13. XU, M., JIN, X. L., WANG, Y., and HUANG, Z. L. Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dynamics, 78, 1451–1459 (2014)

    Article  MathSciNet  Google Scholar 

  14. KUMAR, P., NARAYANAN, S., ADHIKARI, S., and FRISWELL, M. I. Fokker-Planck equation analysis of randomly excited nonlinear energy harvester. Journal of Sound and Vibration, 333, 2040–2053 (2014)

    Article  Google Scholar 

  15. JIN, X. L., WANG, Y., XU, M., and HUANG, Z. L. Semi-analytical solution of random response for nonlinear vibration energy harvesters. Journal of Sound and Vibration, 340, 267–282 (2015)

    Article  Google Scholar 

  16. JIANG, W. A. and CHEN, L. Q. Stochastic averaging of energy harvesting systems. International Journal of Non-Linear Mechanics, 85, 174–187 (2016)

    Article  Google Scholar 

  17. JIANG, W. A. and CHEN, L. Q. Stochastic averaging based on generalized harmonic functions for energy harvesting systems. Journal of Sound and Vibration, 377, 264–283 (2016)

    Article  Google Scholar 

  18. LIU, D., XU, Y., and LI, J. L. Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energy harvester system with fractional-order physical properties. Journal of Sound and Vibration, 399, 182–196 (2017)

    Article  Google Scholar 

  19. LIU, D., XU, Y., and LI, J. L. Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos, Solitons & Fractals, 104, 806–812 (2017)

    Article  MATH  Google Scholar 

  20. XIAO, S. M. and JIN, Y. F. Response analysis of the piezoelectric energy harvester under correlated white noise. Nonlinear Dynamics, 90, 2069–2082 (2017)

    Article  Google Scholar 

  21. YANG, Y. G. and XU, W. Stochastic analysis of monostable vibration energy harvesters with fractional derivative damping under Gaussian white noise excitation. Nonlinear Dynamics, 1–10 (2018)

    Google Scholar 

  22. SUN, Y., HONG, L., JIANG, J., and LI, Z. Estimation of critical conditions for noise-induced bifurcation in nonautonomous nonlinear systems by stochastic sensitivity function. International Journal of Bifurcation and Chaos, 26, 1650184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. CHEN, L. C., LIU, J., and SUN, J. Q. Stationary response probability distribution of SDOF nonlinear stochastic systems. Journal of Applied Mechanics, 84, 051006 (2017)

    Article  Google Scholar 

  24. SUN, Y., HONG, L., YANG, Y., and SUN, J. Q. Probabilistic response of nonsmooth nonlinear systems under Gaussian white noise excitations. Physica A, 508, 111–117 (2018)

    Article  MathSciNet  Google Scholar 

  25. WEHNER, M. F. and WOLFER, W. G. Numerical evaluation of path-integral solution to Fokker-Plank equations. Physical Review A, 27, 2663–2670 (1983)

    Article  Google Scholar 

  26. CRANDALL, S. H., CHANDIRAMANI, K. L., and COOK, R. G. Some first-passage problems in random vibration. Journal of Applied Mechanics, 33, 532–538 (1966)

    Article  Google Scholar 

  27. HSU, C. S. and CHIU, H. M. A cell mapping method for non-linear deterministic and stochastic systems I: the method of analysis. Journal of Applied Mechanics, 53, 695–701 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. HSU, C. S. and CHIU, H. M. A cell mapping method for nonlinear deterministic and stochastic systems II: examples of application. Journal of Applied Mechanics, 53, 702–710 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. SUN, J. Q. and HSU, C. S. The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation. Journal of Applied Mechanics, 57, 1018–1025 (1990)

    Article  MathSciNet  Google Scholar 

  30. NAESS, A. and JOHNSON, J. M. Response statistics of nonlinear, compliant offshore structures by the path integral solution method. Probabilistic Engineering Mechanics, 8, 91–106 (1993)

    Article  Google Scholar 

  31. IOURTCHENKOA, D. V., MO, E., and NAESS, A. Response probability density functions of strongly non-linear systems by the path integration method. International Journal of Non-Linear Mechanics, 41, 693–705 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. FENG, G. M., WANG, B., and LU, Y. F. Path integral, functional method, and stochastic dynamical systems. Probabilistic Engineering Mechanics, 7, 149–157 (1992)

    Article  Google Scholar 

  33. YU, J. S., CAI, G. Q., and LIN, Y. K. A new path integration procedure based on Gauss-Legendre scheme. International Journal of Non-Linear Mechanics, 32, 759–768 (1997)

    Article  MATH  Google Scholar 

  34. YU, J. S. and LIN, Y. K. Numerical path integration of a non-homogeneous Markov process. International Journal of Non-Linear Mechanics, 39, 1493–1500 (2004)

    Article  MATH  Google Scholar 

  35. XIE, W. X., XU, W., and CAI, L. Study of the Duffing-Rayleigh oscillator subject to harmonic and stochastic excitations by path integration. Applied Mathematics and Computation, 172, 1212–1224 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. WANG, Y. A path integration algorithm for stochastic structural dynamic systems. Applied Mathematics and Computation, 228, 423–431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. ZHU, H. T. and DUAN, L. L. Probabilistic solution of non-linear random ship roll motion by path integration. International Journal of Non-Linear Mechanics, 83, 1–8 (2016)

    Article  Google Scholar 

  38. CAO, J. Y., ZHOU, S. X., WANG, W., and LIN, J. Influence of potential well depth on nonlinear tristable energy harvesting. Applied Physics Letters, 106, 173903 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenan Jiang.

Additional information

Citation: JIANG, W. A., SUN, P., ZHAO, G. L., and CHEN, L. Q. Path integral solution of vibratory energy harvesting systems. Applied Mathematics and Mechanics (English Edition), 40(4), 579–590 (2019) https://doi.org/10.1007/s10483-019-2467-8

Project supported by the National Natural Science Foundation of China (Nos. 11702119 and 51779111) and the Natural Science Foundation of Jiangsu Province of China (Nos.BK20170565 and BK20170581)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Sun, P., Zhao, G. et al. Path integral solution of vibratory energy harvesting systems. Appl. Math. Mech.-Engl. Ed. 40, 579–590 (2019). https://doi.org/10.1007/s10483-019-2467-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2467-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation