Skip to main content
Log in

Transport diffuse interface model for simulation of solid-fluid interaction

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a “0=0” equation when the volume fraction of a certain phase takes the value of zero or unity. This is because the conservative variables in phase-density equations include volume fractions. The degeneracy can be avoided by adding an artificial quantity of another material into the pure phase. However, nonphysical waves, such as shear waves in fluids, are introduced by the artificial treatment. In this paper, a transport diffuse interface model, which is able to treat zero/unity volume fractions, is presented for solid-fluid interaction. In the proposed model, a new formulation for phase densities is derived, which is unrelated to volume fractions. Consequently, the new model is able to handle zero/unity volume fractions, and nonphysical waves caused by artificial volume fractions are prevented. One-dimensional and two-dimensional numerical tests demonstrate that more accurate results can be obtained by the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEE, C. B. and WU, J. Z. Transition in wall-bounded flows. Advances in Mechanics, 61(3), 683–695 (2009)

    Google Scholar 

  2. BATRA, R. C. and STEVENS, J. B. Adiabatic shear bands in axisymmetric impact and penetration problems. Computer Methods in Applied Mechanics & Engineering, 151(3-4), 325–342 (1998)

    Article  MATH  Google Scholar 

  3. SCHOCH, S., NIKIFORAKIS, N., and LEE, B. J. The propagation of detonation waves in nonideal condensed-phase explosives confined by high sound-speed materials. Physics of Fluids, 25(8), 452–457 (2013)

    Article  Google Scholar 

  4. DIMONTE, G., TERRONES, G., CHERNE, F. J., GERMANN, T. C., DUPONT, V., KADAU, K., BUTTLER, W. T., ORO, D. M., MORRIS, C., and PRESTON, D. L. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Physical Review Letters, 107(26), 264502 (2011)

    Article  Google Scholar 

  5. LEE, C. B., PENG, H. W., YUAN, H. J., WU, J. Z., ZHOU, M. D., and FAZLE, H. Experimental studies of surface waves inside a cylindrical container. Journal of Fluid Mechanics, 677(3), 39–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. LEE, C. B., SU, Z., ZHONG, H. J., CHEN, S. Y., ZHOU, M. D., and WU, J. Z. Experimental investigation of freely falling thin disks, part 2: transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 732(5), 77–104 (2013)

    Article  MATH  Google Scholar 

  7. GHAISAS, N. S., SUBRAMANIAM, A., and LELE, S. K. A unified high-order Eulerian method for continuum simulations of fluid flow and of elastic-plastic deformations in solids. Journal of Computational Physics, 371(22), 452–482 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. LI, X. L., FU, D. X., and MA, Y. W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Physics of Fluids, 22(2), 025105 (2010)

    Article  MATH  Google Scholar 

  9. BARLOW, A. J., MAIRE, P. H., RIDER, W. J., RIEBEN, R. N., and SHASHKOV, M. J. Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows. Journal of Computational Physics, 322, 603–665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. GHAISAS, N. S., SUBRAMANIAM, A., and LELE, S. K. High-order Eulerian methods for elasticplastic flow in solids and coupling with fluid flows. 46th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Washington, D. C. (2016)

    Google Scholar 

  11. GODUNOV, S. K. and ROMENSKII, E. I. Elements of Continuum Mechanics and Conservation Laws, Kluwer Academic/Plenum Publishers, New York (2003)

    Book  MATH  Google Scholar 

  12. PLOHR, B. J. and SHARP, D. H. A conservative Eulerian formulation of the equations for elastic flow. Advances in Applied Mathematics, 9(4), 481–499 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. HIRT, C. W. and NICHOLS, B. D. Volume of fluid method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  14. BARTON, P. T., DEITERDING, R., MEIRON, D., and PULLIN, D. Eulerian adaptive finitedifference method for high-velocity impact and penetration problems. Journal of Computational Physics, 240(5), 76–99 (2013)

    Article  MathSciNet  Google Scholar 

  15. ABGRALL, R. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. Journal of Computational Physics, 125(1), 150–160 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. BAER, M. R. and NUNZIATO, J. W. A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials. International Journal of Multiphase Flow, 12(6), 861–889 (1986)

    Article  MATH  Google Scholar 

  17. SAUREL, R. and ABGRALL, R. A multiphase Godunov method for compressible multifluid and multiphase flows. Journal of Computational Physics, 150(2), 425–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. SAUREL, R., PETITPAS, F., and BERRY, R. A. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5), 1678–1712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. KAPILA, A. K., MENIKOFF, R., BDZIL, J. B., SON, S. F., and STEWART, D. S. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Physics of Fluids, 13(10), 3002–3024 (2001)

    Article  MATH  Google Scholar 

  20. MURRONE, A. A five equation reduced model for compressible two phase flow problems. Journal of Computational Physics, 202(2), 664–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. FAVRIE, N., GAVRILYUK, S. L., and SAUREL, R. Solid-fluid diffuse interface model in cases of extreme deformations. Journal of Computational Physics, 228(16), 6037–6077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. FAVRIE, N. and GAVRILYUK, S. L. Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction. Journal of Computational Physics, 231(7), 2695–2723 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. NDANOU, S., FAVRIE, N., and GAVRILYUK, S. Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. Journal of Computational Physics, 295(25), 523–555 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. KLUTH, G. and DESPRÉS, B. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational Physics, 229(1), 9092–9118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. ABGRALL, R. and KARNI, S. Computations of compressible multifluids. Journal of Computational Physics, 169(2), 594–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. SHYUE, K. M. An efficient shock-capturing algorithm for compressible multicomponent problems. Journal of Computational Physics, 142(1), 208–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. SHYUE, K. M. Regular article: a fluid-mixture type algorithm for compressible multicomponent flow with van derWaals equation of state. Journal of Computational Physics, 156(1), 43–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. SHYUE, K. M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state. Journal of Computational Physics, 171(2), 678–707 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. MAIRE, P. H. and REBOURCET, B. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. Journal of Computational Physics, 235(2), 626–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. HE, Z. W., ZHANG, Y. S., LI, X. L., LI, L., and TIAN, B. L. Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities. Journal of Computational Physics, 300(5), 269–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Jiequan LI from the Institute of Applied Physics and Computational Mathematics for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Tian.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11702029, 11771054, U1730118, 91852207, and 11801036) and the China Postdoctoral Science Foundation (No. 2016M600967)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, Q. & Tian, B. Transport diffuse interface model for simulation of solid-fluid interaction. Appl. Math. Mech.-Engl. Ed. 40, 321–330 (2019). https://doi.org/10.1007/s10483-019-2443-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2443-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation