Skip to main content
Log in

Dissipation function in turbulent plane Poiseuille and Couette flows subject to spanwise rotations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The dissipation function in turbulent plane Poiseuille flows (PPFs) and plane Couette flows (PCFs) subject to spanwise rotations is analyzed. It is found that, in the PCFs without system rotations, the mean part is constant while the fluctuation part follows a logarithmic law, resulting in a similar logarithmic skin friction law as PPFs. However, if the flow system rotates in the spanwise direction, no obvious dependence on the rotation number can be evaluated. In the PPFs with rotations, the dissipation function shows an increase with the rotation number, while in the PCFs with rotations, when the rotation number increases, the dissipation function first decreases and then increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JOHNSTON, J. P., HALLEEN, R. M., and LEZIUS, D. K. Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. Journal of Fluid Mechanics, 56, 533–559 (1972)

    Article  Google Scholar 

  2. JOHNSTON, J. P. Effects of system rotation on turbulence structure: a review relevant to turbomachinery flows. International Journal of Rotating Machinery, 4, 97–112 (1998)

    Article  Google Scholar 

  3. JAKIRLIĆ, S., HANJALIĆ, K., and TROPEA, C. Modeling rotating and swirling turbulent flows: a perpetual challenge. AIAA Journal, 40, 1984–1996 (2002)

    Article  Google Scholar 

  4. NAKABAYASHI, K. and KITOH, O. Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. Journal of Fluid Mechanics, 315, 1–29 (1996)

    Article  MATH  Google Scholar 

  5. NAKABAYASHI, K. and KITOH, O. Turbulence characteristics of two-dimensional channel flow with system rotation. Journal of Fluid Mechanics, 528, 355–377 (2005)

    Article  MATH  Google Scholar 

  6. TILLMARK, N. and ALFREDSSON, P. H. Experiments on rotating plane Couette flow. Advances in Turbulence VI (ed(s). GAVRILAKIS, S., MACHIELS, L., and MONKEWITZ, P. A.), Kluwer, The Netherlands, 391–394 (1996)

    Google Scholar 

  7. HIWATASHI, K., ALFREDSSON, P. H., TILLMARK, N., and NAGATA, M. Experimental observations of instabilities in rotating plane Couette flow. Physics of Fluids, 19, 048103 (2007)

    Article  MATH  Google Scholar 

  8. TSUKAHARA, T., TILLMARK, N., and ALFREDSSON, P. H. Flow regimes in a plane Couette flow with system rotation. Journal of Fluid Mechanics, 648, 5–33 (2010)

    Article  MATH  Google Scholar 

  9. KAWATA, T. and ALFREDSSON, P. H. Turbulent rotating plane Couette flow: Reynolds and rotation number dependency of flow structure and momentum transport. Physical Review Fluids, 1, 034402 (2016)

    Article  Google Scholar 

  10. KRISTOFFERSEN, R. and ANDERSSON, H. I. Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. Journal of Fluid Mechanics, 256, 163–197 (1993)

    Article  MATH  Google Scholar 

  11. LAMBALLAIS, E., LESIEUR, M., and MÉTAIS, O. Effects of spanwise rotation on the vorticity stretching in transitional and turbulent channel flow. International Journal of Heat and Fluid Flow, 17, 324–332 (1996)

    Article  Google Scholar 

  12. ALVELIUS, K. Studies of Turbulence and Its Modelling Through Large Eddy and Direct Numerical Simulation, Ph.D. dissertation, KTH Royal Institute of Technology, Sweden (1999)

    MATH  Google Scholar 

  13. LIU, N. S. and LU, X. Y. A numerical investigation of turbulent flows in a spanwise rotating channel. Computer and Fluids, 36, 282–298 (2007)

    Article  MATH  Google Scholar 

  14. GRUNDESTAM, O., WALLIN, S., and JOHANSSON, A. V. Direct numerical simulations of rotating turbulent channel flow. Journal of Fluid Mechanics, 598, 177–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. YANG, Y. T. and WU, J. Z. Channel turbulence with spanwise rotation studied using helical wave decomposition. Journal of Fluid Mechanics, 692, 137–152 (2012)

    Article  MATH  Google Scholar 

  16. XIA, Z. H., SHI, Y. P., and CHEN, S. Y. Direct numerical simulation of turbulent channel flow with spanwise rotation. Journal of Fluid Mechanics, 788, 42–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. DAI, Y. J., HUANG, W. X., and XU, C. X. Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel. Physics of Fluids, 28, 115104 (2016)

    Article  Google Scholar 

  18. BRETHOUWER, G. Statistics and structure of spanwise rotating turbulent channel flow at moderate Reynolds numbers. Journal of Fluid Mechanics, 828, 424–458 (2017)

    Article  MathSciNet  Google Scholar 

  19. BECH, K. H. and ANDERSSON, H. I. Secondary flow in weakly rotating turbulent plane Couette flow. Journal of Fluid Mechanics, 317, 195–214 (1996)

    Article  MATH  Google Scholar 

  20. BECH, K. H. and ANDERSSON, H. I. Turbulent plane Couette flow subject to strong system rotation. Journal of Fluid Mechanics, 347, 289–314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. BARRI, M. and ANDERSSON, H. I. Computer experiments on rapidly rotating plane Couette flow. Communications in Computational Physics, 7, 683–717 (2010)

    Google Scholar 

  22. SALEWSKI, M. and ECKHARDT, B. Turbulent states in plane Couette flow with rotation. Physics of Fluids, 27, 045109 (2015)

    Article  Google Scholar 

  23. GAI, J., XIA, Z. H., CAI, Q. D., and CHEN, S. Y. Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows. Physical Review Fluids, 1, 054401 (2016)

    Article  Google Scholar 

  24. XIA, Z. H., SHI, Y. P., CAI, Q. D., WAN, M. P., and CHEN, S. Y. Multiple states in turbulent plane Couette flow with spanwise rotation. Journal of Fluid Mechanics, 837, 477–490 (2018)

    Article  MathSciNet  Google Scholar 

  25. CORRSIN, S. Interpretation of viscous terms in the turbulent boundary energy equation. Journal of the Aeronautics Sciences, 20, 853–854 (1953)

    Article  MathSciNet  Google Scholar 

  26. LAADHARI, F. Reynolds number effect on the dissipation function in wall-bounded flows. Physics of Fluids, 19, 038101 (2007)

    Article  MATH  Google Scholar 

  27. ABE, H. and ANTONIA, R. A. Relationship between the energy dissipation function and the skin friction law in a turbulent channel flow. Journal of Fluid Mechanics, 798, 140–164 (2016)

    Article  MathSciNet  Google Scholar 

  28. AVSARKISOV, V., HOYAS, S., OBERLACK, M., and GARCIA-GALACHE, J. P. Turbulent plane Couette flow at moderately high Reynolds number. Journal of Fluid Mechanics, 751, R1 (2014)

    Article  Google Scholar 

  29. LEE, C. B. Possible universal transitional scenario in a flat plate boundary layer: measurement and visualization. Physical Review E, 62, 3659–3671 (2000)

    Article  Google Scholar 

  30. LEE, C. B. and WU, J. Z. Transition in wall-bounded flows. Applied Mechanics Reviews, 61, 030802 (2008)

    Article  MATH  Google Scholar 

  31. SMITS, A. J., MCKEON, B. J., and MARUSIC, I. High-Reynolds number wall turbulence. Annual Review of Fluid Mechanics, 43, 353–375 (2011)

    Article  MATH  Google Scholar 

  32. MARUSIC, I, MONTY, J. P., HULTMARK, M., and SMITS, A. J. On the logarithmic region in wall turbulence. Journal of Fluid Mechanics, 716, R3 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Xia.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11772297 and 11822208)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Shi, Y., Cai, Q. et al. Dissipation function in turbulent plane Poiseuille and Couette flows subject to spanwise rotations. Appl. Math. Mech.-Engl. Ed. 40, 185–192 (2019). https://doi.org/10.1007/s10483-019-2422-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2422-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation