Skip to main content
Log in

Analytical solution of time fractional Cattaneo heat equation for finite slab under pulse heat flux

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A fractional Cattaneo model is derived for studying the heat transfer in a finite slab irradiated by a short pulse laser. The analytical solutions for the fractional Cattaneo model, the classical Cattaneo-Vernotte model, and the Fourier model are obtained with finite Fourier and Laplace transforms. The effects of the fractional order parameter and the relaxation time on the temperature fields in the finite slab are investigated. The results show that the larger the fractional order parameter, the slower the thermal wave. Moreover, the higher the relaxation time, the slower the heat flux propagates. By comparing the fractional order Cattaneo model with the classical Cattaneo-Vernotte and Fourier models, it can be found that the heat flux predicted using the fractional Cattaneo model always transports from the high temperature to the low one, which is in accord with the second law of thermodynamics. However, the classical Cattaneo-Vernotte model shows that the unphysical heat flux sometimes transports from the low temperature to the high one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KöRNER, C. and BERGMANN, H. W. The physical defects of the hyperbolic heat conduction equation. Applied Physics A, 67, 397–401 (1998)

    Article  Google Scholar 

  2. JOSEPH, D. D. and PREZIOSI, L. Heat waves. Reviews of Modern Physics, 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. ZHANG, Z. and LIU, D. Y. Advances in the study of non-Fourier heat conduction (in Chinese). Advance Mechanics, 30, 446–456 (2000)

    Google Scholar 

  4. ALQAHTANI, H. and YILBAS, B. S. Closed solution of Cattaneo equation including volumetric source in relation to laser short-pulse heating. Canadian Journal of Physics, 89(7), 761–767 (2011)

    Article  Google Scholar 

  5. HOASHI, E., YOKOMINE, T., SHIMIZU, A., and KUNUGI, T. Numerical analysis of wave type heat transfer propagating in a thin foil irradiated by short-pulsed laser. International Journal of Heat and Mass Transfer, 46, 4083–4095 (2003)

    Article  MATH  Google Scholar 

  6. AI, X. and LI, B. Q. Numerical simulation of thermal wave propagation during laser processing of thin films. Journal of Electronic Materials, 34(5), 583–591 (2005)

    Article  Google Scholar 

  7. BLACKWELL, B. F. Temperature profile in semi-infinite body with exponential source and convective boundary condition. Journal of Heat Transfer, 112, 567–571 (1990)

    Article  Google Scholar 

  8. ZUBAIR, S. M. and CHAUDHRY, M. A. Heat conduction in a semi-infinite solid due to timedependent laser source. International Journal of Heat and Mass Transfer, 39, 3067–3074 (1996)

    Article  MATH  Google Scholar 

  9. LAM, T. T. A unified solution of several heat conduction models. International Journal of Heat and Mass Transfer, 56, 653–666 (2013)

    Article  Google Scholar 

  10. LAM, T. T. and FONG, E. Application of solution structure theorem to non-Fourier heat conduction problems: analytical approach. International Journal of Heat and Mass Transfer, 54, 4796–4806 (2011)

    Article  MATH  Google Scholar 

  11. CATTANEO, C. Sur une forme de l’équation de la chaleur eliminant le paradoxe d’une propagation instantanée. Comptes Rendus, 247, 431–433 (1958)

    MATH  Google Scholar 

  12. VERNOTTE, P. Les paradoxes de la théorie continue de l’équation de la chaleur. Comptes Rendus, 246, 3154–3155 (1958)

    MATH  Google Scholar 

  13. NARAYANAMURTI, V. and DYNES, R. C. Observation of second sound in bismuth. Physical Review Letters, 28(22), 1461–1465 (1972)

    Article  Google Scholar 

  14. JIANG, F. M., LIU, D. Y., and ZHOU, J. H. Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale Thermophysical Engineering, 6, 331–346 (2002)

    Article  Google Scholar 

  15. XU, G. Y. and WU, X. F. Numerical simulation of temperature profiles in the finite thickness materials shocked by the pulse heat flux on the hyperbolic equation (in Chinese). Journal of Basic Science and Engineering, 11(1), 65–70 (2003)

    MathSciNet  Google Scholar 

  16. CHAVES, A. S. A fractional diffusion equation to describe Lévy flights. Physics Letter A, 239, 13–16 (1998)

    Article  MATH  Google Scholar 

  17. PARADISI, P., CESARI, R., MAINARDI, F., and TAMPIERI, F. The fractional Fick’s law for non-local transport processes. Physica A, 293, 130–142 (2001)

    Article  MATH  Google Scholar 

  18. HILFER, R. Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  19. SCHIESSEL, H., METZLER, R., BLUMEN, A., and NONNENMACHER, T. F. Generalized viscoelastic models: their fractional equation with solution. Journal of Physics A: Mathematical and General, 28, 6567–6584 (1995)

    Article  MATH  Google Scholar 

  20. ZHENG, L. C., LIU, Y. Q., and ZHANG, X. X. Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Analysis: Real World Applications, 13, 513–525 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. ZHANG, Y. W. Generalized dual phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. International Journal of Heat and Mass Transfer, 52, 4829–4834 (2009)

    Article  MATH  Google Scholar 

  22. COMPTE, A. andMETZLER, R. The generalized Cattaneo equation for the description of anomalous transport processes. Journal of Physics A: Mathematical and General, 30(21), 7277–7289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. POVSTENKO, Y. Fractional Cattaneo-type equations and generalized thermoelasticity. Journal of Thermal Stresses, 34, 97–114 (2011)

    Article  Google Scholar 

  24. QI, H. T., XU, H. Y., and GUO, X. W. The Cattaneo-type time fractional heat conduction equation for laser heating. Computers and Mathematics with Applications, 66, 824–831 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. JIANG, X. Y. and QI, H. T. Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. Journal of Physics A: Mathematical and Theoretical, 45(48), 485101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. XU, G. Y., WANG, J. B., and HAN, Z. Study on the transient temperature field based on the fractional heat conduction equation for laser heating (in Chinese). Applied Mathematics and Mechanics, 36, 844–849 (2015)

    Google Scholar 

  27. XU, H. Y., QI, H. T., and JIANG, X. Y. Fractional Cattaneo heat equation on a semi-infinite medium. Chinese Physics B, 22, 014401 (2013)

    Article  Google Scholar 

  28. QI, H. T. and GUO, X.W. Transient fractional heat conduction with generalized Cattaneo model. International Journal of Heat and Mass Transfer, 76, 535–539 (2014)

    Article  Google Scholar 

  29. MISHR, T. N. and RAI, K. N. Numerical solution of FSPL heat conduction equation for analysis of thermal propagation. Applied Mathematics and Computation, 273, 1006–1017 (2016)

    Article  MathSciNet  Google Scholar 

  30. ZHU, L. L. and ZHENG, X. J. A theory for electromagnetic heat conduction and a numerical model based on Boltzmann equation. International Journal of Nonlinear Science and Numerical Simulation, 7(3), 339–344 (2006)

    Article  MathSciNet  Google Scholar 

  31. CHEN, G. Ballistic-diffusion heat conduction equation. Physical Review Letters, 86(11), 2297–2300 (2001)

    Article  Google Scholar 

  32. GHAZIZADEH, H. R., MAEREFAT, M., and AZIMI, A. Explicit and implicit finite difference schemes for fractional Cattaneo equation. Journal of Computational Physics, 229(19), 7042–7057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. PODLUBNY, I. Fractional Differential Equations, Academic Press, New York (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbao Wang.

Additional information

Citation: XU, G. Y. and WANG, J. B. Analytical solution of time fractional Cattaneo heat equation for finite slab under pulse heat flux. Applied Mathematics and Mechanics (English Edition), 39(10), 1465–1476 (2018) https://doi.org/10.1007/s10483-018-2375-8

Project supported by the National Natural Science Foundation of China (No. 11372281), the Science and Technology Plan Project of Zhoushan (No. 2016C41009), and the Innovative Team Project of Zhejiang Ocean University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Wang, J. Analytical solution of time fractional Cattaneo heat equation for finite slab under pulse heat flux. Appl. Math. Mech.-Engl. Ed. 39, 1465–1476 (2018). https://doi.org/10.1007/s10483-018-2375-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2375-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation