Skip to main content
Log in

Superconvergence analysis of bi-k-degree rectangular elements for two-dimensional time-dependent Schrödinger equation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Superconvergence has been studied for long, and many different numerical methods have been analyzed. This paper is concerned with the problem of superconvergence for a two-dimensional time-dependent linear Schrödinger equation with the finite element method. The error estimate and superconvergence property with order O(hk+1) in the H1 norm are given by using the elliptic projection operator in the semi-discrete scheme. The global superconvergence is derived by the interpolation post-processing technique. The superconvergence result with order O(hk+1 + τ2) in the H1 norm can be obtained in the Crank-Nicolson fully discrete scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BAO, W. Z., JIN, S., and MARKOWICH, P. A. Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM Journal on Scientific Computing, 25(1), 27–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. FEIT, M. D., FLECK, J. A., and STEIGER, A. Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47, 412–433 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. AKRIVIS, G. D. Finite difference discretization of the cubic Schrödinger equation. IMA Journal of Numerical Analysis, 13(1), 115–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. BAO, W. Z. and CAI, Y. Y. Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM Journal on Numerical Analysis, 50(2), 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. HAN, H. D., JIN, J. C., and WU, X. N. A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain. Computers and Mathematics with Applications, 50(8), 1345–1362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. AKRIVIS, G. D., DOUGALIS, V. A., and KARAKASHIAN, O. A. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numerische Mathematik, 59(1), 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. ANTONOPOULOU, D. C., KARALI, G. D., PLEXOUSAKIS, M., and ZOURARIS, G. E. Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain. Mathematics of Computation, 84(294), 1571–1598 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. JIN, J. C. and WU, X. N. Convergence of a finite element scheme for the two-dimensional timedependent Schrödinger equation in a long strip. Journal of Computational and Applied Mathematics, 234(3), 777–793 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. KYZA, I. A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations. ESAIM Mathematical Modelling and Numerical Analysis, 45(4), 761–778 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. LEE, H. Y. Fully discrete methods for the nonlinear Schrödinger equation. Computers and Math-ematics with Applications, 28(6), 9–24 (1994)

    Article  Google Scholar 

  11. TANG, Q., CHEN, C. M., and LIU, L. H. Space-time finite element method for Schrödinger equation and its conservation. Applied Mathematics and Mechanics (English Edition), 27(3), 335–340 (2006) https://doi.org/10.1007/s10483-006-0308-z

    Article  MathSciNet  MATH  Google Scholar 

  12. WANG, J. Y. and HUANG Y. Q. Fully discrete Galerkin finite element method for the cubic nonlinear Schrödinger equation. Numerical Mathematics: Theory, Methods and Applications, 10(3), 670–687 (2017)

    Google Scholar 

  13. ANTONOPOULOU, D. C. and PLEXOUSAKIS, M. Discontinuous Galerkin methods for the linear Schrödinger equation in non-cylindrical domains. Numerische Mathematik, 115(4), 585–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. KARAKASHIAN, O. A. and MAKRIDAKIS C. A space-time finite element method for the nonlinea. Schrödinger equation: the discontinuous Galerkin method. Mathematics of Computation, 67(222), 479–499 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. LU, W. Y., HUANG, Y. Q., and LIU, H. L. Mass preserving discontinuous Galerkin methods for Schrödinger equations. Journal of Computational Physics, 282, 210–226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. GUO, L. and XU, Y. Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with wave operator. Journal of Scientific Computing, 65(2), 622–647 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. WANG, W. and SHU, C. W. The WKB local discontinuous Galerkin method for the simulation of Schrödinger equation in a resonant tunneling diode. Journal of Scientific Computing, 40(1-3), 360–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. XU, Y. and SHU, C. W. Local discontinuous Galerkin methods for nonlinear Schrödinger equations. Journal of Computational Physics, 205, 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. CHEN, C. M. and HUANG Y. Q. High Accuracy Theory of Finite Element Methods (in Chinese), Hunan Science Press, Changsha, 235–248 (1995)

  20. LIN, Q. and YAN, N. N. Construction and Analysis of High Efficient Finite Elements (in Chinese), Hebei University Press, Baoding, 175–185 (1996)

  21. WAHLBIN, L. B. Superconvergence in Galerkin Finite Element Methods, Springer, Berlin, 48–64 (1995)

  22. YAN, N. N. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Meth-ods, Science Press, Beijing, 35–156 (2008)

  23. ARNOLD, D. N., DOUGLAS, J., Jr., and THOMEE, V. Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Mathematics of Computation, 36(153), 53–63 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. CHEN, C. M. and HU, S. F. The highest order superconvergence for bi-k degree rectangular elements at nodes: a proof of 2k-conjecture. Mathematics of Computation, 82(283), 1337–1355 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. CHEN, Y. P. Superconvergence of mixed finite element methods for optimal control problems. Mathematics of Computation, 77(263), 1269–1291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. CHEN, Y. P., HUANG, Y. Q., LIU, W. B., and YAN, N. N. Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. Journal of Scientific Computing, 42(3), 382–403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. HUANG, Y. Q., LI, J. C., WU, C., and YANG, W. Superconvergence analysis for linear tetrahedral edge elements. Journal of Scientific Computing, 62(1), 122–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. HUANG, Y. Q., YANG, W., and YI, N. Y. A posteriori error estimate based on the explicit polynomial recovery. Natural Science Journal of Xiangtan University, 33(3), 1–12 (2011)

    MATH  Google Scholar 

  29. LIN, Q. and ZHOU, J. M. Superconvergence in high-order Galerkin finite element methods. Computer Methods in Applied Mechanics and Engineering, 196(37), 3779–3784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. SHI, D. Y. and PEI, L. F. Superconvergence of nonconforming finite element penalty scheme for Stokes problem using L2 projection method. Applied Mathematics and Mechanics (English Edition), 34(7), 861–874 (2013) https://doi.org/10.1007/s10483-013-1713-x

    Article  MathSciNet  MATH  Google Scholar 

  31. WHEELER, M. F. and WHITEMAN, J. R. Superconvergence of recovered gradients of discrete time/piecewise linear Galerkin approximations for linear and nonlinear parabolic problems. Numerical Methods for Partial Differential Equations, 10(3), 271–294 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. LIN, Q. and LIU, X. Q. Global superconvergence estimates of finite element method for Schrödinger equation. Journal of Computational Mathematics, 16(6), 521–526 (1998)

    MathSciNet  MATH  Google Scholar 

  33. SHI, D. Y., WANG, P. L., and ZHAO, Y. M. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Applied Mathematics Letters, 38, 129–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. TIAN, Z. K., CHEN, Y. P., and WANG J. Y. Superconvergence analysis of bilinear finite element for the nonlinear Schrödinger equation on the rectangular mesh. Advances in Applied Mathematics and Mechanics, 10(2), 468–484 (2018)

    Google Scholar 

  35. WANG, J. Y., HUANG, Y. Q., TIAN, Z. K., and ZHOU, J. Superconvergence analysis of finite element method for the time-dependent Schrödinger equation. Computers and Mathematics with Applications, 71(10), 1960–1972 (2016)

    Article  MathSciNet  Google Scholar 

  36. ZHOU, L. L., XU, Y., ZHANG, Z. M., and CAO, W. X. Superconvergence of local discontinuous Galerkin method for one-dimensional linear Schrödinger equations. Journal of Scientific Computing, 73(2/3), 1290–1315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. HU, H. L., CHEN, C. M., and PAN, K. J. Time-extrapolation algorithm (TEA) for linear parabolic problems. Journal of Computational Mathematics, 32(2), 183–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous referees for their insightful comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11671157)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, Y. Superconvergence analysis of bi-k-degree rectangular elements for two-dimensional time-dependent Schrödinger equation. Appl. Math. Mech.-Engl. Ed. 39, 1353–1372 (2018). https://doi.org/10.1007/s10483-018-2369-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2369-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation