Skip to main content
Log in

Investigation of Coulomb force effects on ethylene glycol based nanofluid laminar flow in a porous enclosure

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Forced convection heat transfer of ethylene glycol based nanofluid with Fe3O4 inside a porous medium is studied using the electric field. The control volume based finite element method (CVFEM) is selected for numerical simulation. The impact of the radiation parameter (Rd), the supplied voltage (Δφ), the volume fraction of nanofluid (ϕ), the Darcy number (Da), and the Reynolds number (Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E x,E y :

components of electric field

D e :

diffusion number

S E :

Lorentz force number

u, v :

components of velocity

q :

electric charge density

J :

electric current density

p :

pressure

K :

permeability of porous media

T :

temperature

T C :

Curie temperature

F E :

electric force

Re :

Reynolds number

Da :

Darcy number

R d :

radiation parameter

Pr E :

electric Prandtl number

N E :

electric field number

D :

charge diffusion coefficient

V :

velocity

k :

thermal conductivity

C p :

heat capacity

qr:

radiation heat flux

m :

shape factor

ϕ :

volume fraction

σ :

electric conductivity

φ :

potential electric field

ε :

dielectric permittivity

ρ :

density

μ :

dynamic viscosity

β r :

radiation coefficient

σ e :

stefan Boltzmann coefficient

s:

solid particles

f:

base fluid

c:

cold

nf:

nanofluid

h:

hot

References

  1. SHEIKHOLESLAMI, M., GANJI, D. D., ASHORYNEJAD, H. R. and ROKNI, H. B., Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition), 33(1), 25–36 (2012) https://doi.org/10.1007/s10483-012-1531-7

    Article  MathSciNet  MATH  Google Scholar 

  2. SHEIKHOLESLAMI, M. and SHEHZAD, S. A. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. International Journal of Heat and Mass Transfer, 122, 1264–1271 (2018)

    Article  Google Scholar 

  3. SHEIKHOLESLAMI, M., GORJI-BANDPY, M., and DOMAIRRY, G. Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM). Applied Mathematics and Mechanics (English Edition), 34(7), 833–846 (2013) https://doi.org/10.1007/s10483-013-1711-9

    Article  Google Scholar 

  4. MAPARU, A. K., GANVIR, V., and RAI, B. Titania nanofluids with improved photocatalytic activity under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 345–352 (2015)

    Article  Google Scholar 

  5. SHEIKHOLESLAMI, M. and ROKNI, H. B. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Physics of Fluids, 30(1), 012003 (2018)

    Article  Google Scholar 

  6. SHEIKHOLESLAMI, M. and SADOUGHI, M. K. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer, 116, 909–919 (2018)

    Article  Google Scholar 

  7. SHEIKHOLESLAMI, M. and ROKNI, H. B. Simulation of nanofluid heat transfer in presence of magnetic field: a review. International Journal of Heat and Mass Transfer, 115, 1203–1233 (2017)

    Article  Google Scholar 

  8. SHEIKHOLESLAMI, M. and GANJI, D. D. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. Journal of the Taiwan Institute of Chemical Engineers, 65, 43–77 (2016)

    Article  Google Scholar 

  9. HAYAT, T., QAYYUM, S., IMTIAZ, M., and ALSAEDI, A. Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. International Journal of Heat and Mass Transfer, 102, 723–732 (2016)

    Article  Google Scholar 

  10. SHEIKHOLESLAMI, M. and CHAMKHA, A. J. Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numerical Heat Transfer, Part A, 69(7), 781–793 (2016)

    Article  Google Scholar 

  11. HASSAN, G. E., ELSAYED, M., ZAHRAA, E., ALI, M. A., and HANAFY, A. A. New temperature-based models for predicting global solar radiation. Applied Energy, 179, 437–450 (2016)

    Article  Google Scholar 

  12. NAYAK, M. K., AKBAR, N. S., PANDEY, V. S., KHAN, Z. H., and TRIPATHI, D. 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technology, 315, 205–215 (2017)

    Article  Google Scholar 

  13. SHEIKHOLESLAMI, M. and BHATTI, M. M. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 111, 1039–1049 (2017)

    Article  Google Scholar 

  14. TAO, Y. B. and HE, Y. L. Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Applied Energy, 143, 38–46 (2015)

    Article  Google Scholar 

  15. MAKINDE, O. D., MABOOD, F., KHAN, W. A., and TSHEHLA, M. S. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219, 624–630 (2016)

    Article  Google Scholar 

  16. MEZRHAB, A., BOUALI, H., AMAOUI, H., and BOUZI, M. Computation of combined natural-convection and radiation heat-transfer in a cavity having a square body at its center. Applied Energy, 83(9), 1004–1023 (2006)

    Article  Google Scholar 

  17. SHEREMET, M. A., POP, I., and ROŞA, N. C. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. Journal of the Taiwan Institute of Chemical Engineers, 61, 211–222 (2016)

    Article  Google Scholar 

  18. HAYAT, T., NISAR, Z., YASMIN, H., and ALSAEDI, A. Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. Journal of Molecular Liquids, 220, 448–453 (2016)

    Article  Google Scholar 

  19. RAJU, C. S. K., SANDEEP, N., and SUGUNAMMA, V. Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: a surgical implant application. Journal of Molecular Liquids, 222, 1183–1191 (2016)

    Article  Google Scholar 

  20. AHMAD, R. and MUSTAFA, M. Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet. Journal of Molecular Liquids, 220, 635–641 (2016)

    Article  Google Scholar 

  21. CHAMKHA, A. J. and AHMED, S. E. Unsteady MHD stagnation-point flow with heat and mass transfer for a three-dimensional porous body in the presence of heat generation/absorption and chemical reaction. Progress in Computational Fluid Dynamics, 11, 388–396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. BACHOK, N., ISHAK, A., NAZAR, R., and POP, I. Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B: Condensed Matter, 405(24), 4914–4918 (2010)

    Article  Google Scholar 

  23. HAYAT, T., KHAN, I. M., FAROOQ, M., ALSAEDI, A., and YASMEEN, T. Impact ofMarangoni convection in the flow of carbon-water nanofluid with thermal radiation. International Journal of Heat and Mass Transfer, 106, 810–815 (2017)

    Article  Google Scholar 

  24. KHANAFER, K., VAFAI, K., and LIGHTSTONE, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 446, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  25. SHEIKHOLESLAMI, M. Application of Control Volume based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer, 1st ed., Elsevier, Amsterdam (2018)

    Google Scholar 

  26. MOALLEMI, M. K. and JANG, K. S. Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. International Journal of Heat and Mass Transfer, 35, 1881–1892 (1992)

    Article  MATH  Google Scholar 

  27. RARANI, E. M., ETESAMI, N., and NASR ESFAHANY, M. Influence of the uniform electric field on viscosity of magnetic nanofluid (Fe3O4-EG). Journal of Applied Physics, 112, 094903 (2012)

    Article  Google Scholar 

  28. CHAMKHA, A. J., ABD EL-AZIZ, M. M., and AHMED, S. E. Effects of thermal stratification on flow and heat transfer due to a stretching cylinder with uniform suction/injection. International Journal of Energy and Technology, 2, 1–7 (2010)

    Article  Google Scholar 

  29. REHMAN, F. U., NADEEM, S., and HAQ, R. U. Heat transfer analysis for three-dimensional stagnation-point flow over an exponentially stretching surface. Chinese Journal of Physics, 55, 1552–1560 (2017)

    Article  Google Scholar 

  30. RAEES, A., XU, H., SUN, Q., and POP, I. Mixed convection in a gravity-driven nano-liquid film containing both nanoparticles and gyrotactic microorganisms. Applied Mathematics and Mechan-ics (English Edition), 36(2), 163–178 (2015)https://doi.org/10.1007/s10483-015-1901-7

    Article  MathSciNet  MATH  Google Scholar 

  31. TAHIR, F., GUL, T., ISLAM, S., SHAH, Z., KHAN, A., KHAN, W., and ALI, W. Flow of a nano-liquid film of Maxwell fluid with thermal radiation and magneto hydrodynamic properties on an unstable stretching sheet. Journal of Nanofluids, 6, 1021–1030 (2017)

    Article  Google Scholar 

  32. SOOMRO, F. A., HAQ, R. U., AL-MDALLAL, Q. M., and ZHANG, Q. Heat genera-tion/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface. Results in Physics, 8, 404–414 (2018)

    Article  Google Scholar 

  33. KHAN, N. S., GUL, T., ISLAM, S., KHAN, A., and SHAH, Z. Brownian motion and thermophoresis effects on MHD mixed convective thin film second-grade nanofluid flow with Hall effect and heat transfer past a stretching sheet. Journal of Nanofluids, 6, 1–18 (2017)

    Article  Google Scholar 

  34. SHEIKHOLESLAMI, M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. Journal of Molecular Liquids, 249, 739–746 (2018)

    Article  Google Scholar 

  35. MIRZA, I. A., ABDULHAMEED, M., and SHAFIE, S. Magnetohydrodynamic approach of non-Newtonian blood flow with magnetic particles in stenosed artery. Applied Mathematics and Mechanics (English Edition), 38(3), 379–392 (2017) https://doi.org/10.1007/s10483-017-2172-7

    Article  MathSciNet  MATH  Google Scholar 

  36. HAYAT, T., NAZAR, H., IMTIAZ, M., and ALSAEDI, A. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Applied Mathematics and Mechanics (English Edition), 38(12), 1663–1678 (2017) https://doi.org/10.1007/s10483-017-2289-8

    Article  MathSciNet  MATH  Google Scholar 

  37. SHEHZAD, S. A., HAYAT, T., ALSAEDI, A., and MERAJ, M. A. Cattaneo-Christov heat and mass flux model for 3D hydrodynamic flow of chemically reactive Maxwell liquid. Applied Mathematics and Mechanics (English Edition), 38(10), 1347–1356 (2017) https://doi.org/10.1007/s10483-017-2250-6

    Article  MathSciNet  MATH  Google Scholar 

  38. AHMED, S. E. Modeling natural convection boundary layer flow of micropolar nanofluid over vertical permeable cone with variable wall temperature. Applied Mathematics and Mechanics (English Edition), 38(8), 1171–1180 (2017) https://doi.org/10.1007/s10483-017-2231-9

    Article  MathSciNet  Google Scholar 

  39. ZHAO, Q. K., XU, H., TAO, L. B., RAEES, A., and SUN, Q. Three-dimensional free bio-convection of nanofluid near stagnation point on general curved isothermal surface. Applied Math-ematics and Mechanics (English Edition), 37(4), 417–432 (2016) https://doi.org/10.1007/s10483-016-2046-9

    Article  MathSciNet  MATH  Google Scholar 

  40. XU, H. A homogeneous-heterogeneous reaction model for heat fluid flow in the stagnation region of a plane surface. International Communications in Heat and Mass Transfer, 87, 112–117 (2017)

    Article  Google Scholar 

  41. TURKYILMAZOGLU, M. Flow of nanofluid plane wall jet and heat transfer. European Journal of Mechanics-B/Fluids, 59, 18–24 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M. Investigation of Coulomb force effects on ethylene glycol based nanofluid laminar flow in a porous enclosure. Appl. Math. Mech.-Engl. Ed. 39, 1341–1352 (2018). https://doi.org/10.1007/s10483-018-2366-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2366-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation