Skip to main content
Log in

Simultaneous impacts of MHD and variable wall temperature on transient mixed Casson nanofluid flow in the stagnation point of rotating sphere

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A numerical analysis is provided to scrutinize time-dependent magnetohydrodynamics (MHD) free and forced convection of an electrically conducting non-Newtonian Casson nanofluid flow in the forward stagnation point region of an impulsively rotating sphere with variable wall temperature. A single-phase flow of nanofluid model is reflected with a number of experimental formulae for both effective viscosity and thermal conductivity of nanofluid. Exceedingly nonlinear governing partial differential equations (PDEs) subject to their compatible boundary conditions are mutated into a system of nonlinear ordinary differential equations (ODEs). The derived nonlinear system is solved numerically with implementation of an implicit finite difference procedure merging with a technique of quasi-linearization. The controlled parameter impacts are clarified by a parametric study of the entire flow regime. It is depicted that from all the exhibited nanoparticles, Cu possesses the best convection. The surface heat transfer and surface shear stresses in the x- and z-directions are boosted with maximizing the values of nanoparticle solid volume fraction φ and rotation λ. Besides, as both the surface temperature exponent n and the Casson parameter γ upgrade, an enhancement of the Nusselt number is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

gradient of velocity at the edge (s−1)

B 0 :

magnetic field (T)

C f x :

shear stress in x-direction

C f z :

shear stress in z-direction

c p :

specific heat (J·kg−1·K−1)

F :

non-dimensional stream function

g :

acceleration due to gravity (m·s−2)

Gr :

Grashof number

k :

thermal conductivity, (W·m−1·K−1)

M g :

parameter of magnetic field

Pr :

Prandtl number

R :

radius of the sphere (m)

Re :

Reynolds number

S :

velocity components in y-direction (m·s−1)

Sc :

Schmidt number

t :

time (s)

T :

dimensional temperature (K)

(u, v, w):

velocity components (m·s−1)

U :

ambient velocity (m·s−1)

(x, y, z):

Cartesian coordinates (m)

β :

coefficient of thermal expansion (K−1)

μ :

dynamic viscosity (kg·m−1·s−1)

λ :

rotation parameter

σ :

electrical conductivity (S·m−1)

ρ :

fluid density (kg·m−3)

θ :

dimensionless temperature

Ω:

angular velocity (s−1)

v :

kinematic viscosity (m2·s−1)

γ*:

mixed convection parameter

γ:

Casson parameter

φ :

nanoparticle solid volume fraction

w:

conditions at the surface

∞:

conditions in the free stream

p:

solid material

nf:

nanofluid particle

f:

fluid

References

  1. MUSTAFA, M., HAYAT, T., POP, I., and HENDI, A. Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet. Zeitschrift für Naturforschung A, 67, 70–76 (2012)

    Article  Google Scholar 

  2. NADEEM, S., HAQ, R. U., AKBAR, N. S., and KHAN, Z. H. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engineering Journal, 52(4), 577–582 (2013)

    Article  Google Scholar 

  3. BOYD, J., BUICK, J., and GREEN, M. S. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flow using the lattice Boltzmann method. Physics of Fluids, 19, 93–103 (2007)

    MATH  Google Scholar 

  4. ELDABE, N. T. M. and SALWA, M. G. E. Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. Journal of the Physical Society of Japan, 64, 41–64 (1995)

    Article  Google Scholar 

  5. NADEEM, S., HAQ, R. U., and AKBAR, N. S. MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Transactions on Nanotechnology, 13, 109–115 (2014)

    Article  Google Scholar 

  6. MUKHOPADHYAY, S., DE RANJAN, P., BHATTACHARRYYA, K., and LAYEK, G. C. Casson fluid flow over an unsteady stretching surface. Ain Shams Engineering Journal, 4, 933–938 (2013)

    Article  Google Scholar 

  7. ANDERSSON, H. I., AARSETH, J. B., and DANDAPAT, B. S. Heat transfer in a liquid film on an unsteady stretching surface. International Journal of Heat and Mass Transfer, 43, 69–74 (2000)

    Article  MATH  Google Scholar 

  8. BHATTACHARYYA, K. MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation. Journal of Thermodynamics, 2013, 169674 (2013)

    Article  Google Scholar 

  9. MAHDY, A. and AHMED, S. E. Unsteady MHD convective flow of non-Newtonian Casson fluid in the stagnation region of an impulsively rotating sphere. Journal of Aerospace Engineering, 30(5), 1–1 (2017)

    Article  Google Scholar 

  10. MAHDY, A. Heat transfer and flow of a Casson fluid due to a stretching cylinder with the Soret and Dufour effects. Journal of Engineering Physics and Thermophysics, 88(4), 927–936 (2015)

    Article  MathSciNet  Google Scholar 

  11. CHOI, S. U. S. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Developments Applications of Non-Newtonian Flows (eds. SIGINER, D. A. and WANG, H. P.), FED-vol. 231/MD-ASME, New York, 66, 99–105 (1995)

    Google Scholar 

  12. CHOI, S. U. S., ZHANG, Z. G., LOCKWOOD, F. E., and GRULKE, E. A. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252–2254 (2001)

    Article  Google Scholar 

  13. SARKAR, J. A critical review on convective heat transfer correlations of nanoluids. Renewable and Sustainable Energy Reviews, 15, 3271–3277 (2011)

    Article  Google Scholar 

  14. BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  15. CHOI, S. Nanofluids: from vision to reality through research. Journal of Heat Transfer, 131, 1–9 (2009)

    Article  Google Scholar 

  16. MUHAMMAD, N., NADEEM, S., and HAQ, R. U. Heat transport phenomenon in the ferro-magnetic fluid over a stretching sheet with thermal stratification. Results in Physics, 7, 854–861 (2017)

    Article  Google Scholar 

  17. MUHAMMAD, N. and NADEEM, S. Ferrite nanoparticles Ni-ZnFe2O4, Mn-ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid. The European Physical Journal Plus, 132, 377 (2017)

    Article  Google Scholar 

  18. RASHID, M., NADEEM, S., SALEEM, S., and NOREEN, S. A. Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. Journal of the Taiwan Institute of Chemical Engineers, 74, 49–58 (2017)

    Article  Google Scholar 

  19. SAEED, D., REZA, H., and POP, I. Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 26(1), 40–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. ABU-NADA, E., OZTOP, H. F., and POP, I. Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection. Superlattices Microstructures, 51(3), 381–395 (2012)

    Article  Google Scholar 

  21. MAHDY, A. and CHAMKHA, A. J. Heat transfer and fluid flow of a non-Newtonian nanofluid over an unsteady contracting cylinder employing Buongiorno’s model. International Journal of Numerical Methods and Heat Fluid Flow, 25(4), 703–723 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. NADEEM, S., RAISHAD, I., MUHAMMAD, N., and MUSTAFA, M. T. Mathematical analysis of ferromagnetic fluid embedded in a porous medium. Results in Physics, 7, 2361–2368 (2017)

    Article  Google Scholar 

  23. MUHAMMED, N., NADEEM, S., and MUSTAFA, M. T. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid. PloS One, 13(1), e0188460 (2018)

    Article  Google Scholar 

  24. NIELD, D. A. and KUZNETSOV, A. V. Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transport in Porous Media, 81, 409–422 (2010)

    Article  MathSciNet  Google Scholar 

  25. MAHDY, A. and AHMED, S. E. Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid. Transport in Porous Media, 91, 423–435 (2012)

    Article  MathSciNet  Google Scholar 

  26. AZIZ, U. R., RASHID, M., and NADEEM, S. Entropy analysis of radioactive rotating nanofluid with thermal slip. Applied Thermal Engineering, 112, 832–840 (2017)

    Article  Google Scholar 

  27. SADIA, S., HINA, G., NAHEED, B., SALEEM, S., HOSSAIN, M. A., and RAMA, S. R. G. Numerical and analytical solution of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone. International Journal of Heat and Mass Transfer, 101, 608–613 (2016)

    Article  Google Scholar 

  28. TIWARI, R. J. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  29. HADY, F. M., IBRAHIM, F. S., ABDEL-GAIED, S. M., and EID, M. R. Effect of heat generation/absorption on natural convective boundary-layer flow from a vertical cone embedded in a porous medium filled with a non-Newtonian nanofluid. International Communications in Heat and Mass Transfer, 30, 1414–1420 (2011)

    Article  Google Scholar 

  30. MAHDY, A. Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nuclear Engineering Design, 249, 248–255 (2012)

    Article  Google Scholar 

  31. MAHDY, A. and HILLAL, M. E. Uncertainties in physical property effects on viscous flow and heat transfer over a nonlinearly stretching sheet with nanofluids. International Communications in Heat and Mass Transfer, 39, 713–719 (2012)

    Article  Google Scholar 

  32. MUHAMMAD, N., NADEEM, S., and MUSTAFA, T. Squeezed flow of a nanofluid with Cattaneo-Christov heat and mass fluxes. Results in Physics, 7, 862–869 (2017)

    Article  Google Scholar 

  33. SAEED, D., REZA, H., and POP, I. Unsteady convective heat and mass transfer of a nanofluid in Howarth’s stagnation point by Buongiorno’s model. International Journal of Numerical Methods for Heat and Fluid Flow, 25(5), 1176–1197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. SAEED, D., REZA, H., and POP, I. Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technology, 311, 147–156 (2017)

    Article  Google Scholar 

  35. CHAMKHA, A. J., GORLA, R. S. R., and GHODESWAR, K. Nonsimilar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid. Transport in Porous Media, 86(1), 13–22 (2010)

    Article  Google Scholar 

  36. SAEED, D. and POP, I. Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme. Advanced Powder Technology, 28, 900–909 (2017)

    Article  Google Scholar 

  37. NADEEM, S., KHAN, A. U., and SALEEM, S. A comparative analysis on different nanofluid models for the oscillatory stagnation point flow. The European Physical Journal Plus, 131, 261 (2016)

    Article  Google Scholar 

  38. MAKINDE, O. D. and AZIZ, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50, 1326–1332 (2011)

    Article  Google Scholar 

  39. TAKHAR, H. S., SLAOUTI, A., KUMARI, M., and NATH, G. Unsteady free convection flow in the stagnation-point region of a rotating sphere. International Journal Non-Linear Mechanics, 33(5), 857–865 (1998)

    Article  MATH  Google Scholar 

  40. CHAMKHA, A. J., TAKHAR, H. S., and NATH, G. Unsteady MHD rotating flow over a rotating sphere near the equator. Acta Mechanica, 164(1/2), 31–46 (2003)

    Article  MATH  Google Scholar 

  41. ANILKUMAR, D. and ROY, S. Self-similar solution of the unsteady mixed convection flow in the stagnation point region of a rotating sphere. Heat and Mass Transfer, 40(6/7), 487–493 (2004)

    Google Scholar 

  42. MAHDY, A. and AHMED, S. E. Unsteady MHD double diffusive convection in the stagnation region of an impulsively rotating sphere in the presence of thermal radiation effect. Journal of the Taiwan Institute of Chemical Engineers, 58, 173–180 (2016)

    Article  Google Scholar 

  43. OZTOP, H. F. and ABU-NADA, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326–1336 (2008)

    Article  Google Scholar 

  44. DAS, S. and JANA, R. N. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate. Alexandria Engineering Journal, 54, 55–64 (2015)

    Article  Google Scholar 

  45. JAWAD, R., AZIZAH, M. R., and ZURNI, O. Numerical investigation of copper-water (Cu-water) nanofluid with different shapes of nanoparticles in a channel with stretching wall: slip effects. Mathematical and Computational Applications, 21, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  46. CEBECI, T. and BRADSHAW, P. Physical and Computational Aspects of Convective Heat Transfer, Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  47. TAKHAR, H. S., CHAMKHA, A. J., and NATH, G. Unsteady laminar MHD flow and heat transfer in the stagnation region of an impulsively spinning and translating sphere in the presence of buoyancy forces. Heat and Mass Transfer, 37, 397–402 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the reviewers for their constructive and precise suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdy, A. Simultaneous impacts of MHD and variable wall temperature on transient mixed Casson nanofluid flow in the stagnation point of rotating sphere. Appl. Math. Mech.-Engl. Ed. 39, 1327–1340 (2018). https://doi.org/10.1007/s10483-018-2365-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2365-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation