Skip to main content
Log in

Two-dimensional equations for thin-films of ionic conductors

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck (PNP) theory, the two-dimensional (2D) equations for thin ionic conductor films are obtained from the three-dimensional (3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MASLIYAH, J. H. and BHATTACHARJEE, S. Electrokinetic and Colloid Transport Phenomena, John Wiley and Sons, New York (2006)

    Book  Google Scholar 

  2. KORNYSHEV, A. A. Double-layer in ionic liquids: paradigm change? Journal of Physical Chemistry B, 111, 5545–5557 (2007)

    Article  Google Scholar 

  3. LOCKETT, V., HORNE, M., SEDEV, R., RODOPOULOS, T., and RALSTON, J. Differential capacitance of the double layer at the electrode/ionic liquids interface. Physical Chemistry Chemical Physics, 12, 12499–12512 (2010).

    Article  Google Scholar 

  4. KALUPSON, J., MA, D., RANDALL, C. A., RAJAGOPALAN, R., and ADU, K. Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. Journal of Physical Chemistry C, 118, 2943–2952 (2014)

    Article  Google Scholar 

  5. SYAHIDAH, S. N. and MAJID, S. R. Ionic liquid-based polymer gel electrolytes for symmetrical solid-state electrical double layer capacitor operated at different operating voltages. Electrochimica Acta, 175, 184–192 (2015)

    Article  Google Scholar 

  6. CALVERT, P. Hydrogels for soft machines. Advanced Materials, 21, 743–756 (2009)

    Article  Google Scholar 

  7. MORIN, S. A., SHEPHERD, R. F., KWOK, S. W., STOKES, A. A., NEMIROSKI, A., and WHITESIDES, G. M. Camouflage and display for soft machines. Science, 337, 828–832 (2012)

    Article  Google Scholar 

  8. NIU, X., YANG, X., BROCHU, P., ASTOYANOV, H., YUN, S., YU, Z., and PEI, Q. Bistable large-strain actuation of interpenetrating polymer networks. Advanced Materials, 24, 6513–6519 (2012)

    Article  Google Scholar 

  9. ROCHE, E. T., WOHLFARTH, R., OVERVELDE, J. T. B., VASILYEV, N. V., PIGULA, F. A., MOONEY, D. J., BERTOLDI, K., and WALSH, C. J. Actuators: a bioinspired soft actuated material. Advanced Materials, 26, 1145–1145 (2014)

    Article  Google Scholar 

  10. CHOSSAT, J. B., PARK, Y. L., WOOD, R. J., and DUCHAINE, V. A soft strain sensor based on ionic and metal liquids. IEEE Sensors Journal, 13, 3405–3414 (2013)

    Article  Google Scholar 

  11. KALTENBRUNNER, M., SEKITANI, T., REEDER, J., YOKOTA, T., KURIBARA, K., TOKUHARA, T., DRACK, M., SCHWÖDIAUER, R., GRAZ, I., BAUER-GOGONEA, S., BAUER, S., and SOMEYA, T. An ultra-lightweight design for imperceptible plastic electronics. nature, 499, 458–463 (2013)

    Article  Google Scholar 

  12. CARPI, F., FREDIANI, G., TURCO, S., and ROSSI, D. D. Bioinspired tunable lens with musclelike electroactive elastomers. Advanced Functional Materials, 21, 4152–4158 (2011)

    Article  Google Scholar 

  13. ANDERSON, I. A., GISBY, T. A., MCKAY, T. G., OBRIEN, B. M., and CALIUS, E. P. Multifunctional dielectric elastomer artificial muscles for soft and smart machines. Journal of Applied Physics, 112, 041101 (2012)

    Article  Google Scholar 

  14. HAMMOCK, M. L., CHORTOS, A., TEE, B. C. K., TOK, J. B. H., and BAO, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Advanced Materials, 25(4), 5997–6038 (2013)

    Article  Google Scholar 

  15. KEPLINGER, C., SUN, J. Y., FOO, C. C., ROTHEMUND, P., WHITESIDES, G. M., and SUO, Z. Stretchable, transparent, ionic conductors. Science, 341, 984–987 (2013)

    Article  Google Scholar 

  16. CHEN, B., LU, J. J., YANG, C. H., YANG, J. H., ZHOU, J., CHEN, Y. M., and SUO, Z. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Applied Materials & Interfaces, 6, 7840–7845 (2014)

    Article  Google Scholar 

  17. MINDLIN, R. D. High frequency vibrations of piezoelectric crystal plates. International Journal of Solids and Structures, 8, 895–906 (1972)

    Article  MATH  Google Scholar 

  18. LEE, P. C. Y., SYNGELLAKIS, S., and HOU, J. P. A two-dimensional theory for high-frequency vibrations of piezoelectric crystal plates with or without electrodes. Journal of Applied Physics, 61, 1249–1262 (1987)

    Article  Google Scholar 

  19. TIERSTEN, H. F. On the thickness expansion of the electric potential in the determination of two-dimensional equations for the vibration of electroded piezoelectric plates. Journal of Applied Physics, 91, 2277–2283 (2002)

    Article  Google Scholar 

  20. WANG, J. and YANG, J. S. Higher-order theories of piezoelectric plates and applications. Applied Mechanics Review, 53, 87–99 (2000)

    Article  Google Scholar 

  21. WU, B., CHEN, W. Q., and YANG, J. S. Two-dimensional equations for high-frequency extensional vibrations of piezoelectric ceramic plates with thickness poling. Archive Applied Mechanics, 84, 1917–1935 (2014)

    Article  MATH  Google Scholar 

  22. YANG, C. H., CHEN, B., LU, J. J., YANG, J. H., ZHOU, J., CHEN, Y. M., and SUO, Z. Ionic cable. Extreme Mechanics Letters, 3, 59–65 (2015)

    Article  Google Scholar 

  23. KATO, M. Numerical analysis of the Nernst-Planck-Poisson system. Journal of Theoretical Biology, 177, 299–304 (1995)

    Article  Google Scholar 

  24. COALSON, R. D. and KURNIKOVA, M. G. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Transactions on Nanobioscience, 4, 81–93 (2005)

    Article  Google Scholar 

  25. KILIC, M. S. and BAZANT, M. Z. Steric effects in the dynamics of electrolytes at large applied voltages: II. modified Poisson-Nernst-Planck equations. Physical Review E, 75, 021503 (2007)

    Google Scholar 

  26. KRABBENHØFT, K. and KRABBENHØFT, J. Application of the Poisson-Nernst-Planck equations to the migration test. Cement and Concrete Research, 38, 77–88 (2007)

    Article  Google Scholar 

  27. KOSIŃKA, I. D., GOYCHUK, I., KOSTUR, M., SCHMID, G., and HÄNGGI, P. Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77, 031131 (2008)

    Article  Google Scholar 

  28. LIU, W. One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. Journal of Differential Equations, 246, 428–451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. SCHÖNKE, J. Unsteady analytical solutions to the Poisson-Nernst-Planck equations. Journal of Physics A: Mathematical and Theoretical, 45, 455204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. BARBERO, G. and SCALERANDI, M. Similarities and differences among the models proposed for real electrodes in the Poisson-Nernst-Planck theory. Journal of Chemical Physics, 136, 084705 (2012)

    Article  Google Scholar 

  31. GOLOVNEV, A. and TRIMPER, S. Exact solution of the Poisson-Nernst-Planck equations in the linear regime. Journal of Chemical Physics, 131, 114903 (2009)

    Article  Google Scholar 

  32. ZHOU, S. A. and UESAKA, M. Modeling of transport phenomena of ions and polarizable molecules: a generalized Poisson-Nernst-Planck theory. International Journal of Engineering Science, 44, 938–948 (2006)

    Article  Google Scholar 

  33. SUN, J. Y., KEPLINGER, C., WHITESIDES, G. M., and SUO, Z. Ionic skin. Advanced Materials, 26, 7608–7614 (2014)

    Article  Google Scholar 

  34. LARSON, C., PEELE, B., LI, S., ROBINSON, S., TOTARO, M., BECCAI, L., MAZZOLAI, B., and SHEPHERD, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 351, 1071–1074 (2016)

    Article  Google Scholar 

  35. MINDLIN, R. D. High frequency vibrations of plated, crystal plates. Progress in Applied Mechanics the Prager Anniversary Volume, Macmillan, New York, 73–84 (1963)

    Google Scholar 

  36. MINDLIN, R. D. On Reissner’s equations for sandwich plates. Mechanics Today, 5, 315–328 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. TIERSTEN, H. F. Equations for the control of the flexural vibrations of composite plates by partially electroded piezoelectric actuators. Active Materials and Smart Structures, 2427, 326–342 (1995).

    Article  Google Scholar 

  38. YANG, J. S. Equations for elastic plates with partially electroded piezoelectric actuators in flexure with shear deformation and rotatory inertia. Journal of Intelligent Material Systems and Structures, 8, 444–451 (1997)

    Article  Google Scholar 

  39. LIU, N., YANG, J. S., and CHEN, W. Q. Thin-film piezoelectric actuators of nonuniform thickness and nonhomogeneous material properties for modulating actuation stress. Mechanics of Advanced Materials and Structures, 22, 803–812 (2015)

    Article  Google Scholar 

  40. WALLMERSPERGER, T., KELLER, K., KRӦPLIN, B., GÜNTHER, M., and GERLACH, G. Modeling and simulation of pH-sensitive hydrogels. Colloid Polymer Science, 289, 535–544 (2011)

    Article  Google Scholar 

  41. LAI, F. and LI, H. Modeling of effect of initial fixed charge density on smart hydrogel response to ionic strength of environmental solution. Soft Matter, 6, 311–320 (2010)

    Article  Google Scholar 

  42. LI, H., CHEN, J., and LAM, K. Y. Multiphysical modeling and meshless simulation of electricsensitive hydrogels. Journal of Polymer Science B: Polymer Physics, 42, 1514–1531 (2004)

    Article  Google Scholar 

  43. KIM, Y. S., LIU, M., ISHIDA, Y., EBINA, Y., OSADA,M., SASAKI, T., HIKIMA, T., TAKATA, M., and AIDA, T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nature Materials, 14, 1002–1007 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Zhang.

Additional information

Citation: LU, S. T., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Two-dimensional equations for thin-films of ionic conductors. Applied Mathematics and Mechanics (English Edition), 39(8), 1071–1088 (2018) https://doi.org/10.1007/s10483-018-2354-6

Project supported by the National Natural Science Foundation of China (Nos. 11672265, 11202182, and 11621062), the Fundamental Research Funds for the Central Universities (Nos. 2016QNA4026 and 2016XZZX001-05), and the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zhang, C., Chen, W. et al. Two-dimensional equations for thin-films of ionic conductors. Appl. Math. Mech.-Engl. Ed. 39, 1071–1088 (2018). https://doi.org/10.1007/s10483-018-2354-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2354-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation