Skip to main content
Log in

Dynamics of a fluid-filled curvilinear pipeline

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A mathematical model is presented, and numerical experiments are performed to describe the mechanics of the slow movement of a pipeline. The problem reduction algorithm to one-dimensional formulation is offered. Results of numerical experiment for the model problem are adduced. The proposed mathematical model is found to adequately describe the dynamics of known phenomena of pipes. The cross-sections of the extended curvilinear thin-walled pipeline are numerically demonstrated to experience warping, which has experimental confirmation in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

v 0 :

fluid velocity vector

L :

pipe length

ϑ s0 :

fluid velocity at the inlet

R 0 :

pipe radius

v s , v θ , v R :

components of the velocity of the fluid along the coordinates s, θ, and R, respectively

A,B :

coefficients of the first fundamental form of the middle surface of the pipe

p :

pressure in the fluid

h :

pipe wall thickness

s :

arc length along the pipe axis

u, v, w :

displacements of the median surface of a pipe along the coordinates s, θ, and R, respectively

x, y, z :

Cartesian coordinates

s, θ,R :

curvilinear coordinates

g ij :

components of a metric tensor

g :

acceleration due to gravity

H i :

Lamé coefficients

k i :

main curvatures of the median sur-face

Re :

Reynolds number

E :

Young’s modulus of the pipe mate-rial

p e :

ambient pressure

p a :

atmosphere pressure

ℓ:

characteristic scale of length

μ :

viscosity

ρ :

density

Φ(ϑ s0):

specific hydraulic resistance

κ 0(s), κ(s, t):

initial and current curvatures of the axial line of the pipe

θ :

angular curvilinear coordinate

ζ:

axial dimensionless coordinate

ω:

characteristic scale of time

ν :

Poisson’s ratio

Γ:

axial line of the pipe

ρ 0(s):

initial radius of curvature of the axis of the pipe

f:

fluid stream conditions

t:

pipe conditions

e:

external medium conditions.

References

  1. Feodosiev, V. I. Advanced Stress and Stability Analysis: Worked Examples, Springer-Verlag, Berlin/Heidelberg (2005)

    Google Scholar 

  2. Towhata, I. Geotechnical Earthquake Engineering, Springer-Verlag, Berlin/Heidelberg (2008)

    Book  Google Scholar 

  3. Paidoussis, M. P. Fluid-structure interactions. Slender Structures and Axial Flow, Academic Press, San Diego/London (1998)

    Google Scholar 

  4. Bai, Y. Pipelines and Risers, Elsevier, Amsterdam (2003)

    Google Scholar 

  5. Bashurov, V. V., Vaganova, N. A., Kropotov, A. I., Pchelintsev, M. V., Skorkin, N. A., and Filimonov, M. Y. Nonlinear model of a pipeline in a gravity field with an ideal fluid moving through it. Journal of Applied Mechanics and Technical Physics, 53(1), 43–48 (2012)

    Article  MATH  Google Scholar 

  6. Liu, R., Wang, W. G., Yan, S. W., and Wu, X. L. Engineering measures for preventing upheaval buckling of buried submarine pipelines. Applied Mathematics and Mechanics (English Edition), 33(6), 781–796 (2012) https://doi.org/10.1007/s10483-012-1586-6

    Article  Google Scholar 

  7. Liu, R., Liu, W. B., Wu, X. L., and Yan, S. W. Global lateral buckling analysis of idealized subsea pipelines. Journal of Central South University, 21(1), 416–427 (2014)

    Article  Google Scholar 

  8. Wang, B. and Zhou, J. Strain analysis of buried steel pipelines across strike-slip faults. Journal of Central South University of Technology, 18(5), 1654–1661 (2011)

    Article  Google Scholar 

  9. Kim, J. Harmonic axisymmetric thick shell element for static and vibration analyses. KSME International Journal, 18(10), 1747–1754 (2004)

    Article  Google Scholar 

  10. Rodrigues, M. R., Zouain, N., Borges, L., and de Souza, N. E. A. A continuum-based mixed axisymmetric shell element for limit and shakedown analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(1), 153–172 (2014)

    Article  Google Scholar 

  11. Sun, J., Xu, X., Lim, C. W., and Tan, V. B. C. An energy conservative symplectic methodology for buckling of cylindrical shells under axial compression. Acta Mechanica, 224(8), 1579–1592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zubov, L. M. Equations of nonlinear dynamics of elastic shells in cylindrical Eulerian coordinates. Doklady Physics, 61(5), 218–222 (2016)

    Article  MathSciNet  Google Scholar 

  13. Rukavishnikov, V. A. and Tkachenko, O. P. Numerical and asymptotic solution of the equations of propagation of hydroelastic vibrations in a curved pipe. Journal of Applied Mechanics and Technical Physics, 41(6), 1102–1110 (2000)

    Article  MATH  Google Scholar 

  14. Rukavishnikov, V. A. and Tkachenko, O. P. Nonlinear equations of motion of an extensible under-ground pipeline: derivation and numerical modeling. Journal of Applied Mechanics and Technical Physics, 44(4), 571–576 (2003)

    Article  MATH  Google Scholar 

  15. Rukavishnikov, V. A. and Tkachenko, O. P. Effect of the pipe curvature on internal elastic wave propagation. Computational Mathematics and Mathematical Physics, 50(11), 1886–1894 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rukavishnikov, V. A. and Tkachenko, O. P. Numerical analysis of the mathematical model of hydroelastic oscillations in a curved pipeline. Mathematical Models and Computer Simulations, 3(4), 508–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rukavishnikov, V. A. and Tkachenko, O. P. Approximate solution to the nonlinear problem of an underground pipeline deformation. Journal of Applied and Industrial Mathematics, 6(1), 100–110 (2012)

    Article  MathSciNet  Google Scholar 

  18. Sedov, L. I. A Course in Continuum Mechanics, Vol. 4, Translation from the Russian (ed. Radok, J. R. M.), Wolters-Noordhoff, Groningen (1971)

  19. Sasic, R. and Sasic, S. A new approach to the velocity field investigation in case of the entry flow in curved pipes with circular cross section. Acta Mechanica, 140, 103–117 (2000)

    Article  MATH  Google Scholar 

  20. Novozhilov, V. V. and Radok J. R. M. Thin Shell Theory (Paperback, Softcover Reprint of the Original 1st ed. 1964), Springer-Verlag, Netherlands (2014)

    Google Scholar 

  21. Goto, S. I. Amplitude equations for a linear wave equation in a weakly curved pipe. Journal of Physics A: Mathematical and Theoretical, 42(44), 445205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nikuradse, J. Laws of Flow in Rough Pipes, Technical Memorandum 1292, Translation of “Strömungsgesetze in Rauhen Rohren.”\VDI-Forschungsheft 361. Beilage zu “Forschung auf dem Gebiete des Ingenieurwesens”\Ausgabe B Band 4, July/August 1933, NACA, Washington (1950)

    Google Scholar 

  23. Loitsyanskii, L. G. Mechanics of Liquids and Gases, Pergamon Press, Oxford/New York (1966)

    MATH  Google Scholar 

  24. Landau, L. D. and Lifshitz, E. M. Fluid Mechanics (Volume 6 of A Course of Theoretical Physics), Butterworth-Heinemann, Oxford (1987)

    MATH  Google Scholar 

  25. Havil, J. Gamma: Exploring Euler’s Constant, Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  26. Widjaja, B. and Lee, S. H. H. Flow box test for viscosity of soil in plastic and viscous liquid states. Soils and Foundations, 53(1), 35–46 (2013)

    Article  Google Scholar 

  27. Gol’ Denveizer, A. L., von Karman, T., and Dryden, H. L. Theory of Elastic Thin Shells: Solid and Structural Mechanics, Elsevier, New York (2014)

    Google Scholar 

  28. Popov, Y. P. and Samarskii, A. A. Difference Methods for Solving Problems Gas Dynamics (in Russian), Nauka, Moscow (1992)

    Google Scholar 

  29. Vlasov, V. Z. The General Principles of Construction of The Technical Theory of Shells (in Russian)/Vlasov, V. Z. Selected Works, Vol. 2, RAS, Mocsow, 467–503 (1963)

    Google Scholar 

  30. Timoshenko, S. P. Strength and Vibrations of Structural Elements (in Russian), Nauka, Moskow, 284–291 (1975)

    Google Scholar 

  31. Timoshenko, S. P. Strength of Materials, Part I: Elementary Theory and Problems, 3rd ed., D. Van Nostrand Company, Princeton (1955)

  32. Athisakul, C., Monprapussorn, T., Pulngern, T., and Chucheepsakul, S. The effect of axial ex-tensibility on three-dimensional behavior of tensioned pipes/risers transporting fluid. Proceedings of the Eighth ISOPE Pacific/Asia Offshore Mechanics Symposium, the International Society of Offshore and Polar Engineers, Bangkok, 97–104 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Tkachenko.

Additional information

Citation: Rukavishnikov, V. A. and Tkachenko, O. P. Dynamics of a fluid-filled curvilinear pipeline. Applied Mathematics and Mechanics (English Edition) (2018) https://doi.org/10.1007/s10483-018-2338-9

Project supported by the Russian Science Foundation (No. 18-11-00021)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukavishnikov, V.A., Tkachenko, O.P. Dynamics of a fluid-filled curvilinear pipeline. Appl. Math. Mech.-Engl. Ed. 39, 905–922 (2018). https://doi.org/10.1007/s10483-018-2338-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2338-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation