Skip to main content

Advertisement

Log in

Mathematical modelling of axonal microtubule bundles under dynamic torsion

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Owing to its viscoelastic nature, axon exhibits a stress rate-dependent me- chanical behavior. An extended tension-shear chain model with Kelvin-Voigt viscoelas- ticity is developed to illustrate the micromechanical behavior of the axon under dynamic torsional conditions. Theoretical closed-form expressions are derived to predict the de- formation, stress transfer, and failure mechanism between microtubule (MT) and tau protein while the axon is sheared dynamically. The results obtained from the present an- alytical solutions demonstrate how the MT-tau interface length, spacing between the tau proteins, and loading rate affect the mechanical properties of axon. Moreover, it is found that the MTs are more prone to rupture due to the contributions from the viscoelastic effects. Under the torsional force, the MTs are so long that the stress concentrates at the loaded end where axonal MTs will break. This MT-tau protein dynamics model can help to understand the underlying pathology and molecular mechanisms of axonal injury. Additionally, the emphasis of this paper is on the micromechanical behavior of axon, whereas this theoretical model can be equally applicable to other soft or hard tissues, owning the similar fibrous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hay, J., Johnson, V. E., Smith, D. H., and Stewart, W. Chronic traumatic encephalopathy: the neuropathological legacy of traumatic brain injury. Annual Review of Pathology, 11, 21–45 (2016)

    Article  Google Scholar 

  2. Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F., and Kraus, J. A systematic review of brain injury epidemiology in Europe. Acta Neurochirurgica, 148, 255–268 (2006)

    Article  Google Scholar 

  3. Lazarus, C., Soheilypour, M., and Mofrad, M. R. Torsional behavior of axonal microtubule bundles. Biophysical Journal, 109, 231–239 (2015)

    Article  Google Scholar 

  4. Lang, G. E., Waters, S. L., Vella, D., and Goriely, A. Axonal buckling following stretch injury. Journal of Elasticity, 11, 1–18 (2017)

    MATH  Google Scholar 

  5. Emilia, P., Grzegorz, W., Anna, S. O., Patryk, J., and Elżbieta, S. The comparison of the value of CT imaging and selected MRI sequences (including DWI) in the evaluation of axonal injuries. Polish Journal of Radiology, 75, 13–17 (2010)

    Google Scholar 

  6. Wright, R. M. and Ramesh, K. T. An axonal strain injury criterion for traumatic brain injury. Biomechanics and Modeling in Mechanobiology, 11, 245–260 (2012)

    Article  Google Scholar 

  7. Donald, C. L. M., Dikranian, K., Song, S. K., Bayly, P. V., Holtzman, D. M., and Brody, D. L. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Experimental Neurology, 205, 116–131 (2007)

    Article  Google Scholar 

  8. Bennett, R. E., Donald, C. L. M., and Brody, D. L. Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neuroscience Letters, 513, 160–165 (2012)

    Article  Google Scholar 

  9. Conde, C. and Cáceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience, 10, 319–332 (2009)

    Article  Google Scholar 

  10. Pampaloni, F., Lattanzi, G., Jonás, A., Surrey, T., Frey, E., and Florin, E. L. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proceedings of the National Academy of Sciences, 103, 10248–10253 (2006)

    Article  Google Scholar 

  11. Chen, J., Kanai, Y., Cowan, N. J., and Hirokawa, N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. nature, 360, 674–677 (1992)

    Article  Google Scholar 

  12. Ahmadzadeh, H., Smith, D. H., and Shenoy, V. B. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model. Biophysical Journal, 106, 1123–1133 (2014)

    Article  Google Scholar 

  13. Goldstein, L. S. and Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annual Review of Neuroscience, 23, 39–71 (2000)

    Article  Google Scholar 

  14. Lu, W. and Gelfand, V. I. Moonlighting motors: kinesin, dynein, and cell polarity. Trends in Cell Biology, 27, 505–514 (2017)

    Article  Google Scholar 

  15. Schaedel, L., John, K., Gaillard, J., Nachury, M. V., Blanchoin, L., and Théry, M. Microtubules self-repair in response to mechanical stress. Nature Materials, 14, 1156–1163 (2015)

    Article  Google Scholar 

  16. Rooij, R., Miller, K. E., and Kuhl, E. Modeling molecular mechanisms in the axon. Computational Mechanics, 59, 1–15 (2016)

    MATH  Google Scholar 

  17. Kis, A., Kasas, S., Babić, B., Kulik, A. J., Benôit, W., Briggs, G. A. D., SchÖnenberger, C., Catsicas, S., and Forró, L. Nanomechanics of microtubules. Physical Review Letters, 89, 248101 (2002)

    Article  Google Scholar 

  18. Reeves, A. G. and Swenson, R. S. Chapter 29: cranial and spinal trauma. Disorders of the Nervous System, a Primer. http://www.dartmouth.edu/~dons/. (2004)

    Google Scholar 

  19. Meaney, D. F., Smith, D. H., Shreiber, D. I., Bain, A. C., Miller, R. T., Ross, D. T., and Gennarelli, T. A. Biomechanical analysis of experimental diffuse axonal injury. Journal of Neurotrauma, 12, 689–694 (1995)

    Article  Google Scholar 

  20. Gennarelli, T. A., Thibault, L. E., Adams, J. H., Graham, D. I., Thompson, C. J., and Marcincin, R. P. Diffuse axonal injury and traumatic coma in the primate. Annals of Neurology, 12, 564–574 (1982)

    Article  Google Scholar 

  21. Thibault, L., Gennarelli, T., and Margulies, S. S. The strain dependent pathophysiological consequences of inertial loading on central nervous system tissue. International Conference on the Biomechanics of Impacts, Bron, France (1990)

    Google Scholar 

  22. Ivancevic, V. G. New mechanics of traumatic brain injury. Cognitive Neurodynamics, 3, 281–293 (2009)

    Article  Google Scholar 

  23. Zhang, L., Yang, K. H., and King, A. I. A proposed injury threshold for mild traumatic brain injury. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering, 126, 226–236 (2004)

    Google Scholar 

  24. Kučera, O., Havelka, D., and Cifra, M. Vibrations of microtubules: physics that has not met biology yet. Wave Motion, 72, 13–22 (2016)

    MathSciNet  Google Scholar 

  25. Zhang, J. and Wang, C. Boundary condition-selective length dependence of the flexural rigidity of microtubules. Physics Letters A, 381, 2167–2173 (2017)

    Article  Google Scholar 

  26. Zhang, J. and Wang, C. Molecular structural mechanics model for the mechanical properties of microtubules. Biomechanics and Modeling in Mechanobiology, 13, 1175–1184 (2014)

    Article  Google Scholar 

  27. Yasuda, R., Miyata, H., Jr, and Kinosita, K. Direct measurement of the torsional rigidity of single actin filaments. Journal of Molecular Biology, 263, 227–236 (1996)

    Article  Google Scholar 

  28. Kikumoto, M., Kurachi, M., Tosa, V., and Tashiro, H. Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophysical Journal, 90, 1687–1696 (2006)

    Article  Google Scholar 

  29. Tsuda, Y., Yasutake, H., Ishijima, A., and Yanagida, T. Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proceedings of the National Academy of Sciences, 93, 12937–12942 (1996)

    Article  Google Scholar 

  30. Yi, L., Chang, T., and Ru, C. Buckling of microtubules under bending and torsion. Journal of Applied Physics, 103, 103516 (2008)

    Article  Google Scholar 

  31. Che lminiak, P., Dixon, J., and Tuszyński, J. Torsional elastic deformations of microtubules within continuous sheet model. The European Physical Journal E, 31, 215–227 (2010)

    Article  Google Scholar 

  32. Demir, C. and Civalek, Ö. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Applied Mathematical Modelling, 37, 9355–9367 (2013)

    Article  Google Scholar 

  33. Johnson, V. E., Weber, M. T., Xiao, R., Cullen, D. K., Meaney, D. F., Stewart, W., and Smith, D. H. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathologica (2018) https://doi.org/10.1007/s00401-018-1824-0

    Google Scholar 

  34. Tangschomer, M. D., Patel, A. R., Baas, P. W., and Smith, D. H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24, 1401–1410 (2010)

    Article  Google Scholar 

  35. Ahmadzadeh, H., Smith, D. H., and Shenoy, V. B. Mechanical effects of dynamic binding between tau proteins on microtubules during axonal injury. Biophysical Journal, 109, 2328–2337 (2015)

    Article  Google Scholar 

  36. Gao, H., Ji, B., J¨ager, I., Arzt, E., and Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the National Academy of Sciences, 100, 5597–5600 (2003)

    Article  Google Scholar 

  37. Gao, H., Ji, B., Buehler, M. J., and Yao, H. Flaw tolerant nanostructures of biological materials. Mechanics of the 21st Century, Springer, Dordrecht, 131–138 (2005)

    Chapter  Google Scholar 

  38. Singh, A., Kallakuri, S., Chen, C., and Cavanaugh, J. M. Structural and functional changes in nerve roots due to tension at various strains and strain rates: an in-vivo study. Journal of Neurotrauma, 26, 627–640 (2009)

    Article  Google Scholar 

  39. Shamloo, A., Manuchehrfar, F., and Rafii-Tabar, H. A viscoelastic model for axonal microtubule rupture. Journal of Biomechanics, 48, 1241–1247 (2015)

    Article  Google Scholar 

  40. Cloots, R. J. H., van Dommelen, J. A. W., Kleiven, S., and Geers, M. G. D. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomechanics and Modeling in Mechanobiology, 12, 1–14 (2013)

    Article  Google Scholar 

  41. Wegmann, S., Schöler, J., Bippes, C. A., Mandelkow, E., and Muller, D. J. Competing interactions stabilize pro-and anti-aggregant conformations of human tau. Journal of Biological Chemistry, 286, 20512–20524 (2011)

    Article  Google Scholar 

  42. Fadić, R., Vergara, J., and Alvarez, J. Microtubules and caliber of central and peripheral processes of sensory axons. Journal of Comparative Neurology, 236, 258–264 (1985)

    Article  Google Scholar 

  43. Peter, S. J. and Mofrad, M. R. Computational modeling of axonal microtubule bundles under tension. Biophysical Journal, 102, 749–757 (2012)

    Article  Google Scholar 

  44. Huang, G., Mai, Y., and Ru, C. Surface deflection of a microtubule loaded by a concentrated radial force. Nanotechnology, 19, 125101 (2008)

    Article  Google Scholar 

  45. Spillantini, M. G. and Goedert, M. Tau protein pathology in neurodegenerative diseases. Trends in Neurosciences, 21, 428–433 (1998)

    Article  Google Scholar 

  46. Hirokawa, N., Shiomura, Y., and Okabe, S. Tau proteins: the molecular structure and mode of binding on microtubules. The Journal of Cell Biology, 107, 1449–1459 (1988)

    Article  Google Scholar 

  47. Kawakami, M., Byrne, K., Brockwell, D. J., Radford, S. E., and Smith, D. A. Viscoelastic study of the mechanical unfolding of a protein by AFM. Biophysical Journal, 91, L16–L18 (2006)

    Article  Google Scholar 

  48. Bell, G. I. Models for the specific adhesion of cells to cells. Science, 200, 618–627 (1978)

    Article  Google Scholar 

  49. Rosenberg, K. J., Ross, J. L., Feinstein, H. E., Feinstein, S. C., and Israelachvili, J. Complementary dimerization of microtubule-associated tau protein: implications for microtubule bundling and tau-mediated pathogenesis. Proceedings of the National Academy of Sciences, 105, 7445–7450 (2008)

    Article  Google Scholar 

  50. Goriely, A., Geers, M. G. D., Holzapfel, G. A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J. A. W., Waters, S., and Kuhl, E. Mechanics of the brain: perspectives, challenges, and opportunities. Biomechanics and Modeling in Mechanobiology, 14, 931–965 (2015)

    Article  Google Scholar 

  51. Wu, J., Yuan, H., Li, L., Fan, K., Qian, S., and Li, B. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading. Journal of Theoretical Biology, 437, 202–213 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Soheilypour, M., Peyro, M., Peter, S. J., and Mofrad M. R. K. Buckling behavior of individual and bundled microtubules. Biophysical Journal, 108, 1718–1726 (2015)

    Article  Google Scholar 

  53. Aumeier, C., Schaedel, L., Gaillard, J., John, K., Blanchoin, L., and Théry, M. Self-repair promotes microtubule rescue. Nature Cell Biology, 18, 1054–1064 (2016)

    Article  Google Scholar 

  54. Mckee, A. C., Cantu, R. C., Nowinski, C. J., Hedleywhyte, E. T., Gavett, B. E., Budson, A. E., Santini, V. E., Lee, H. S., Kubilus, C. A., and Stern, R. A. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68, 709–735 (2009)

    Article  Google Scholar 

  55. Vandenbedem, H. and Kuhl, E. Tau-ism: the Yin and Yang of microtubule sliding, detachment, and rupture. Biophysical Journal, 109, 2215–2217 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yuan.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11032005), the Major Project of Department of Science and Technology of Guizhou Province (No. 2014-6024), and the Academician Workstation of Department of Science and Technology of Guizhou Province (No. 2015-4004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J.Y., Yuan, H. & Li, L.Y. Mathematical modelling of axonal microtubule bundles under dynamic torsion. Appl. Math. Mech.-Engl. Ed. 39, 829–844 (2018). https://doi.org/10.1007/s10483-018-2335-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2335-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation