Skip to main content
Log in

3D Casson nanofluid flow over slendering surface in a suspension of gyrotactic microorganisms with Cattaneo-Christov heat flux

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A mathematical model is proposed to execute the features of the non-uniform heat source or sink in the chemically reacting magnetohydrodynamic (MHD) Casson fluid across a slendering sheet in the presence of microorganisms and Cattaneo-Christov heat flux. Multiple slips (diffusion, thermal, and momentum slips) are applied in the modeling of the heat and mass transport processes. The Runge-Kutta based shooting method is used to find the solutions. Numerical simulation is carried out for various values of the physical constraints when the Casson index parameter is positive, negative, or infinite with the aid of plots. The coefficients of the skin factors, the local Nusselt number, and the Sherwood number are estimated for different parameters, and discussed for engineering interest. It is found that the gyrotactic microorganisms are greatly encouraged when the dimensionless parameters increase, especially when the Casson fluid parameter is negative. It is worth mentioning that the velocity profiles when the Casson fluid parameter is positive are higher than those when the Casson fluid parameter is negative or infinite, whereas the temperature and concentration fields show exactly opposite phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticle. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 231, 99–105 (1995)

    Google Scholar 

  2. Zhu, J., Zheng, L., Zheng, L. C., and Zhang, X. X. Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction. Applied Mathematics and Mechanics (English Edition), 36(9), 1131–1146 (2015) https://doi.org/10.1007/s10483-015-1977-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Hsiao, K. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850–861 (2016)

    Article  Google Scholar 

  4. Hayat, T., Asad, S., and Alsaedi, A. Flow of Casson fluid with nanoparticles. Applied Mathematics and Mechanics (English Edition), 37(4), 459–470 (2016) https://doi.org/10.1007/s10483-016-2047-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Sheikholeslami, M. and Rokni, H. B. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Computer Methods in Applied Mechanics and Engineering, 317, 419–430 (2017)

    Article  MathSciNet  Google Scholar 

  6. Sheikholeslami, M. Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement. International Journal of Hydrogen Energy, 42, 821–829 (2017)

    Article  Google Scholar 

  7. Zhu, J., Wang, S. N., Zheng, L. C., and Zhang, X. X. Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity. Applied Mathematics and Mechanics (English Edition), 38, 125–136 (2017) https://doi.org/10.1007/s10483-017-2155-6

    Article  MathSciNet  Google Scholar 

  8. Sheikholeslami, M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. Journal of Molecular Liquids, 234, 364–374 (2017)

    Article  Google Scholar 

  9. Mahanthesh, B., Gireesha, B. J., Shehzad, S. A., Abbasi, F. M., and Gorla, R. S. R. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Applied Mathematics and Mechanics (English Edition), 38(7), 969–980 (2017) https://doi.org/10.1007/s10483-017-2219-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayat, T., Mumtaz, M., Shafiq, A., and Alsaedi, A. Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet. Applied Mathematics and Mechanics (English Edition), 38(2), 271–288 (2017) https://doi.org/10.1007/s10483-017-2168-9

    Article  MathSciNet  Google Scholar 

  11. Oyelakin, I. S., Mondal, S., and Sibanda, P. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alexandria Engineering Journal, 55, 1025–1035 (2016)

    Article  Google Scholar 

  12. Cattaneo, C. Sulla conduzione del calore. Some Aspects of Diffusion Theory (ed. Pignedoli, A.), Springer, Berlin, Heidelberg, 83–101 (1948)

    Google Scholar 

  13. Christov, C. I. On frame in different formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communication, 36, 481–486 (2009)

    Article  MATH  Google Scholar 

  14. Straughan, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95–98 (2010)

    Article  MATH  Google Scholar 

  15. Li, J., Zheng, L., and Liu, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. Journal of Molecular Liquids, 221, 19–25 (2016)

    Article  Google Scholar 

  16. Hayat, T., Khan, M. I., Farooq, M., Yasmeen, T., and Alsaedi, A. Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Journal of Molecular Liquids, 220, 49–55 (2016)

    Article  Google Scholar 

  17. Liu, L., Zheng, L., Liu, F., and Zhang, X. An improved heat conduction model with Riesz fractional Cattaneo-Christov flux. International Journal of Heat and Mass Transfer, 103, 1191–1197 (2016)

    Article  Google Scholar 

  18. Hayat, T., Qayyum, S., Imtiaz, M., and Alsaedi, A. Impact of Cattaneo-Christov heat flux in Jeffrey fluid flow with homogeneous-heterogeneous reactions. PLoS One, 11, e0148662 (2016)

    Article  Google Scholar 

  19. Hayat, T., Qayyum, S., Imtiaz, M., and Alsaedi, A. Flow between two stretchable rotating disks with Cattaneo-Christov heat flux model. Results in Physics, 7, 126–133 (2017)

    Article  Google Scholar 

  20. Hayat, T., Kiran, A., Imtiaz, M., and Alsaedi, A. Unsteady flow of carbon nanotubes with chemical reaction and Cattaneo-Christov heat flux model. Results in Physics, 7, 823–831 (2017)

    Article  Google Scholar 

  21. Hashim and Khan, M. On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet. Results in Physics, 7, 310–319 (2017)

    Article  Google Scholar 

  22. Malik, M. Y., Khan, M., Salahuddin, T., and Khan, I. Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: using Keller box method. Engineering Science and Technology, an International Journal, 19, 1985–1992 (2016)

    Article  Google Scholar 

  23. Muhammad, N., Nadeem, S., and Mustafa, M. Squeezed flow of a nanofluid with Cattaneo-Christov heat and mass fluxes. Results in Physics, 7, 862–869 (2017)

    Article  Google Scholar 

  24. Mustafa, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper convected Maxwell fluid. AIP Advances, 5, 047109 (2015)

    Article  Google Scholar 

  25. Shehzad, S. A., Abbasi, F. M., Hayat, T., and Alsaedi, A. Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. Journal of Molecular Liquids, 224, 274–278 (2016)

    Article  Google Scholar 

  26. Rubab, K. and Mustafa, M. Cattaneo-Christov heat flux model for MHD three-dimensional flow of Maxwell fluid over a stretching sheet. PLoS One, 11, e0153481 (2015)

    Article  Google Scholar 

  27. Abbasi, F. M., Hayat, T., Shehzad, S. A., and Alsaedi, A. Impact of Cattaneo-Christov heat flux on flow of two-types viscoelastic fluid in Darcy-Forchheimer porous medium. International Journal of Numerical Methods for Heat and Fluid Flow, 27, 1955–1966 (2017)

    Article  Google Scholar 

  28. Meraj, M. A., Shehzad, S. A., Hayat, T., Abbasi, F. M., and Alsaedi, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38(4), 557–566 (2017) https://dor.org/10.1007/s10483-017-2188-6

    Article  MathSciNet  Google Scholar 

  29. Devi, S. P. A. and Prakash, M. Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. Journal of the Nigerian Mathematical Society, 34, 318–330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Devi, S. P. A. and Prakash, M. Slip flow effects over hydromagnetic forced convective flow over a slandering stretching sheet. Journal of Applied Fluid Mechanics, 9, 683–692 (2016)

    Article  Google Scholar 

  31. Babu, M. J. and Sandeep, N. MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects. Alexandria Engineering Journal, 55, 2193–2201 (2016)

    Article  Google Scholar 

  32. Khan, M. and Khan, W. A. Three-dimensional flow and heat transfer to burgers fluid using Cattaneo-Christov heat flux model. Journal of Molecular Liquids, 221, 651–657 (2016)

    Article  Google Scholar 

  33. Hayat, T., Muhammad, T., Alsaedi, A., and Ahmad, B. Three-dimensional flow of nanofluid with Cattaneo-Christov double diffusion. Results in Physics, 6, 897–903 (2016)

    Article  Google Scholar 

  34. Raju, C. S. K., Sekhar, K. R., Ibrahim, S. M., Lorentzini, G., Reddy, G. W., and Lorentzini, E. Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles. Continuum Mechanics and Thermodynamics, 29, 699–713 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Raju, C. S. K., Ibrahim, S. M., Anuradha, S., and Priyadharshini, P. Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection. The European Physical Journal Plus, 131, 409 (2016)

    Article  Google Scholar 

  36. Hayat, T., Khan, M. I., Farooq, M., Alsaedi, A., Waqas, M., and Yasmeen, T. Impact of Cattaneo- Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mass Transfer, 99, 702-710 (2016)

  37. Mamatha, S. U., Mahesha, and Raju, C. S. K. Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions. Informatics Medicine Unlocked, 9, 76–85 (2017)

    Article  Google Scholar 

  38. Hsiao, K. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method. Energy, 130, 486–499 (2017)

    Article  Google Scholar 

  39. Ramesh, G. K., Gireesha, B. J., Shehzad, S. A., and Abbasi, F. M. Analysis of heat transfer phenomenon in magnetohydrodynamic Casson fluid flow through Cattaneo-Christov heat diffusion theory. Communications in Theoretical Physics, 68, 91–95 (2017)

    Article  MathSciNet  Google Scholar 

  40. Hsiao, K. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with Radiative and viscous dissipation effects. Applied Thermal Engineering, 112, 1281–1288 (2017)

    Article  Google Scholar 

  41. Kumar, N. S., Prasad, P. D., Raju, C. S. K., Varma, S. V. K., and Shehzad, S. A. Partial slip and dissipation on MHD radiative ferro-fluid over a non-linear permeable convectively heated stretching sheet. Results in Physics, 7, 1940–1949 (2017)

    Article  Google Scholar 

  42. Ramesh, G. K., Kumar, K. G., Shehzad, S. A., and Gireesha, B. J. Enhancement of radiation on hydromagnetic Casson fluid flow towards a stretched cylinder with suspension of liquid-particles. Canadian Journal of Physics, 96, 18–24 (2018)

    Article  Google Scholar 

  43. Hsiao, K. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. International Journal of Heat and Mass Transfer, 112, 983–990 (2017)

    Article  Google Scholar 

  44. Ramesh, G. K., Prasannakumara, B. C., Gireesha, B. J., and Rashidi, M. M. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. Journal of Applied Fluid Mechanics, 9, 1115–1122 (2016)

    Article  Google Scholar 

  45. Hsiao, K. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850–861 (2016)

    Article  Google Scholar 

  46. Ramesh, G. K. Numerical study of the influence of heat source on stagnation point flow towardsa stretching surface of a Jeffrey nanoliquid. Journal of Engineering, 2015, 382061 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagendramma, V., Raju, C.S.K., Mallikarjuna, B. et al. 3D Casson nanofluid flow over slendering surface in a suspension of gyrotactic microorganisms with Cattaneo-Christov heat flux. Appl. Math. Mech.-Engl. Ed. 39, 623–638 (2018). https://doi.org/10.1007/s10483-018-2331-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2331-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation