Skip to main content
Log in

Comparative study of two lattice Boltzmann multiphase models for simulating wetting phenomena: implementing static contact angles based on the geometric formulation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Wetting phenomena are widespread in nature and industrial applications. In general, systems concerning wetting phenomena are typical multicomponent/multiphase complex fluid systems. Simulating the behavior of such systems is important to both scientific research and practical applications. It is challenging due to the complexity of the phenomena and difficulties in choosing an appropriate numerical method. To provide some detailed guidelines for selecting a suitable multiphase lattice Boltzmann model, two kinds of lattice Boltzmann multiphase models, the modified S-C model and the H-C-Z model, are used in this paper to investigate the static contact angle on solid surfaces with different wettability combined with the geometric formulation (Ding, H. and Spelt, P. D. M. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75(4), 046708 (2007)). The specific characteristics and computational performance of these two lattice Boltzmann method (LBM) multiphase models are analyzed including relationship between surface tension and the control parameters, the achievable range of the static contact angle, the maximum magnitude of the spurious currents (MMSC), and most importantly, the convergence rate of the two models on simulating the static contact angle. The results show that a wide range of static contact angles from wetting to non-wetting can be realized for both models. MMSC mainly depends on the surface tension. With the numerical parameters used in this work, the maximum magnitudes of the spurious currents of the two models are on the same order of magnitude. MMSC of the S-C model is universally larger than that of the H-C-Z model. The convergence rate of the S-C model is much faster than that of the H-C-Z model. The major foci in this work are the frequently-omitted important details in simulating wetting phenomena. Thus, the major findings in this work can provide suggestions for simulating wetting phenomena with LBM multiphase models along with the geometric formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barthlott, W. and Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1–8 (1997)

    Article  Google Scholar 

  2. Bechert, D. W., Bruse, M., and Hage, W. Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 28(5), 403–412 (2000)

    Article  Google Scholar 

  3. Cottin-Bizonne, C., Barrat, J. L., Bocquet, L., and Charlaix, E. Low-friction flows of liquid at nanopatterned interfaces. Nature Materials, 2(4), 237–240 (2003)

    Article  Google Scholar 

  4. Gao, X. and Jiang, L. Biophysics: water-repellent legs of water striders. nature, 432(7013), 36–36 (2004)

    Article  Google Scholar 

  5. Marmur, A. Soft contact: measurement and interpretation of contact angles. Soft Matter, 2(1), 12–17 (2005)

    Article  Google Scholar 

  6. Chen, S. and Doolen, G. D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1), 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  7. Succi, S. Lattice Boltzmann across scales: from turbulence to DNA translocation. The European Physical Journal B, 64(3), 471–479 (2008)

    Article  MathSciNet  Google Scholar 

  8. Rothman, D. H. and Keller, J. M. Immiscible cellular-automaton fluids. Journal of Statistical Physics, 52(3), 1119–1127 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G. Lattice Boltzmann model of immiscible fluids. Physical Review A, 43(8), 4320–4327 (1991)

    Article  Google Scholar 

  10. Alexander, F. J., Chen, S., and Grunau, D. W. Hydrodynamic spinodal decomposition: growth kinetics and scaling functions. Physical Review B, 48(1), 634–637 (1993)

    Article  Google Scholar 

  11. Shan, X. and Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47(3), 1815–1819 (1993)

    Article  Google Scholar 

  12. Shan, X. and Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E, 49(4), 2941–2948 (1994)

    Article  Google Scholar 

  13. Swift, M. R., Orlandini, E., Osborn, W. R., and Yeomans, J. M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E, 54(5), 5041–5052 (1996)

    Article  Google Scholar 

  14. Swift, M. R., Osborn, W. R., and Yeomans, J. M. Lattice Boltzmann simulation of non-ideal fluids. Physical Review Letters, 75(5), 830–833 (1995)

    Article  Google Scholar 

  15. Zheng, L., Zheng, S., and Zhai, Q. Lattice Boltzmann equation method for the Cahn-Hilliard equation. Physical Review E, 91(1), 013309 (2015)

    Article  MathSciNet  Google Scholar 

  16. Liang, H., Shi, B. C., Guo, Z. L., and Chai, Z. H. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Physical Review E, 89(5), 053320 (2014)

    Article  Google Scholar 

  17. Inamuro, T., Ogata, T., Tajima, S., and Konishi, N. A lattice Boltzmann method for incompress-ible two-phase flows with large density differences. Journal of Computational Physics, 198(2), 628–644 (2004)

    Article  MATH  Google Scholar 

  18. Lee, T. and Liu, L. Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. Journal of Computational Physics, 229(20), 8045–8063 (2010)

    Article  MATH  Google Scholar 

  19. Guo, Z. L. and Zheng, C. G. Theory and Applications of Lattice Boltzmann Method, Science Press, Beijing (2009)

    Google Scholar 

  20. Inamuro, T., Konishi, N., and Ogino, F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer Physics Communications, 129(1), 32–45 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalarakis, A. N., Burganos, V. N., and Payatakes, A. C. Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics. Physical Review E, 65(2), 056702 (2002)

    Article  Google Scholar 

  22. He, X., Chen, S., and Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics, 152(2), 642–663 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, X., Zhang, R., Chen, S., and Doolen, G. D. On the three-dimensional Rayleigh-Taylor insta-bility. Physics of Fluids, 11(5), 1143–1152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Q., Luo, K. H., Kang, Q. J., He, Y. L., Chen, Q., and Liu, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 52, 62–105 (2015)

    Article  Google Scholar 

  25. Zhang, R., He, X., and Chen, S. Interface and surface tension in incompressible lattice Boltzmann multiphase model. Computer Physics Communications, 129(1), 121–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, L., Kang, Q., Mu, Y., He, Y. L., and Tao, W. Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. International Journal of Heat and Mass Transfer, 76(6), 210–236 (2014)

    Article  Google Scholar 

  27. Shan, X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Physical Review E, 73(4), 047701 (2006)

    Article  Google Scholar 

  28. Yuan, P. and Schaefer, L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 18(4), 042101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K., and Toschi, F. Generalized lattice Boltzmann method with multirange pseudopotential. Physical Review E, 75(2), 026702 (2007)

    Article  MathSciNet  Google Scholar 

  30. Yu, Z. and Fan, L. S. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Physical Review E, 82(4), 046708 (2010)

    Article  Google Scholar 

  31. He, X., Shan, X., and Doolen, G. D. Discrete Boltzmann equation model for nonideal gases. Physical Review E, 57(1), 13–16 (1998)

    Article  Google Scholar 

  32. Lee, T. and Lin, C. L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. Journal of Computational Physics, 206(1), 16–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Connington, K. and Lee, T. A review of spurious currents in the lattice Boltzmann method for multiphase flows. Journal of Mechanical Science and Technology, 26(12), 3857–3863 (2012)

    Article  Google Scholar 

  34. Lee, T. and Fischer, P. F. Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Physical Review E, 74(4), 046709 (2006)

    Article  Google Scholar 

  35. Yiotis, A. G., Psihogios, J., Kainourgiakis, M. E., Papaioannou, A., and Stubos, A. K. A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300(1-2), 35–49 (2007)

    Article  Google Scholar 

  36. Wang, L., Huang, H. B., and Lu, X. Y. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. Physical Review E, 87(1), 013301 (2013)

    Article  Google Scholar 

  37. Zhang, R. L., Di, Q. F., Wang, X. L., and Gu, C. Y. Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by lattice Boltzmann method. Journal of Hydrodynamics Seires B, 22(3), 366–372 (2010)

    Article  Google Scholar 

  38. Zhang, R. L., Di, Q. F., Wang, X. L., Ding, W. P., and Gong, W. Numerical study of the relationship between apparent slip length and contact angle by lattice Boltzmann method. Journal of Hydrodynamics Seires B, 24(4), 535–540 (2012)

    Article  Google Scholar 

  39. Kuzmin, A. Multiphase Simualtions with Lattice Boltzmann Shceme, Ph.D. dissertation, Unversity of Calgary (2009)

    Google Scholar 

  40. Ding, H. and Spelt, P. D. M. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75(4), 046708 (2007)

    Article  Google Scholar 

  41. Qian, Y. H., D’HumiYres, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  42. Hu, A., Li, L., Uddin, R., and Liu, D. Contact angle adjustment in equation-of-state-based pseu-dopotential model. Physical Review E, 93(5), 053307 (2016)

    Article  Google Scholar 

  43. Succi, S. Lattice Boltzmann 2038. Europhysics Letters, 109(5), 50001 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchang Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 50874071 and 51704191), the Shanghai Leading Academic Discipline Project (No. S30106), the Key Program of Science and Technology Commission of Shanghai Municipality (No. 12160500200), and the PetroChina Innovation Foundation (No. 2017D-5007-0209)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Di, Q., Wang, W. et al. Comparative study of two lattice Boltzmann multiphase models for simulating wetting phenomena: implementing static contact angles based on the geometric formulation. Appl. Math. Mech.-Engl. Ed. 39, 513–528 (2018). https://doi.org/10.1007/s10483-018-2320-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2320-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation