Skip to main content
Log in

Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

numerical study is reported for two-dimensional flow of an incompressible Powell-Eyring fluid by stretching the surface with the Cattaneo-Christov model of heat diffusion. Impacts of heat generation/absorption and destructive/generative chemical reactions are considered. Use of proper variables leads to a system of non-linear dimensionless expressions. Velocity, temperature and concentration profiles are achieved through a finite difference based algorithm with a successive over-relaxation (SOR) method. Emerging dimensionless quantities are described with graphs and tables. The temperature and concentration profiles decay due to enhancement in fluid parameters and Deborah numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischer, E. G. Extrusion of Plastics, Wiley, New York (1976)

    Google Scholar 

  2. Sakiadis, B. C. Boundary layer behaviour on continuous solid surfaces I: boundary layer equations for two-dimensional and axisymmetric flow. A.I.Ch.E. Journal, 7, 26–28 (1961)

    Article  Google Scholar 

  3. Sakiadis, B. C. Boundary layer behaviour on continuous solid surfaces II: the boundary layer on a continuous flat surface. A.I.Ch.E. Journal, 7, 221–225 (1961)

    Article  Google Scholar 

  4. Crane, L. J. Flow past a stretching plate. Zeitschrift f¨ur angewandte Mathematik und Physik, 21, 645–647 (1970)

    Article  Google Scholar 

  5. Gupta, P. S. and Gupta, A. S. On a stretching sheet with suction and blowing. The Canadian Journal of Chemical Engineering, 55, 744–746 (1977)

    Article  Google Scholar 

  6. Wang, C. Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Analysis Real World Applications, 10, 375–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rashidi, M. M. and Pour, S. A. M. Analytic approximate solution for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method. Nonlinear Analysis: Modeling and Control, 15, 83–95 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Powel, R. E. and Eyring, H. Mechanism for relaxation theory of viscosity. nature, 154, 427–428 (1944)

    Article  Google Scholar 

  9. Hayat, T., Iqbal, Z., Qasim, M., and Obaidat, S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. International Journal of Heat and Mass Transfer, 55, 1817–1822 (2012)

    Article  Google Scholar 

  10. Javed, T., Ali, N., Abbas, Z., and Sajid, M. Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet. Chemical Engineering Communications, 200, 327–336 (2013)

    Article  Google Scholar 

  11. Hayat, T., Gull, N., Farooq, M., and Ahmad, B. Thermal radiation effect in MHD flow of Powell-Eyring nanofluid induced by a stretching cylinder. Journal of Aerospace Engineering, 29, 04015011 (2015)

    Article  Google Scholar 

  12. Fourier, J. B. J. Théorie Analytique de la Chaleur, Didot, Paris (1822)

    MATH  Google Scholar 

  13. Shehzad, S. A., Hayat, T., Alsaedi, A., and Ahmad, B. Effects of thermophoresis and thermal radiation in mixed convection three-dimensional flow of Jeffrey fluid. Applied Mathematics and Mechanics (English Edition), 36, 655–668 (2015) https://doi.org/10.1007/s10483-015-1935-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayat, T., Shafiq, A., Alsaedi, A., and Shahzad, S. A. Unsteady MHD flow over exponentially stretching sheet with slip conditions. Applied Mathematics and Mechanics (English Edition), 37, 193–208 (2016) https://doi.org/10.1007/s10483-016-2024-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Mahanthesh, B., Gireesha, B. J., Shehzad, S. A., Abbasi, F. M., and Gorla, R. S. R. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radia-tion, and mixed convection. Applied Mathematics and Mechanics (English Edition), 38, 969–980 (2017) https://doi.org/10.1007/s10483-017-2219-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Sheikholeslami, M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of lattice Boltzmann method. Journal of Molecular Liquids, 234, 364–374 (2017)

    Article  Google Scholar 

  17. Sheikholeslami, M. and Sadoughi, M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. International Journal of Heat and Mass Transfer, 113, 106–114 (2017)

    Article  Google Scholar 

  18. Sheikholeslami, M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using lattice Boltzmann method. Journal of Molecular Liquids, 231, 555–565 (2017)

    Article  Google Scholar 

  19. Sheikholeslami, M. and Bhatti, M. M. Active method for nanofluid heat transfer enhancement by means of EHD. International Journal of Heat and Mass Transfer, 109, 115–122 (2017)

    Article  Google Scholar 

  20. Sheikholeslami, M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. Journal of Molecular Liquids, 229, 137–147 (2017)

    Article  Google Scholar 

  21. Sheikholeslami, M. Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement. International Journal of Hydrogen Energy, 42, 821–829 (2017)

    Article  Google Scholar 

  22. Sheikholeslami, M. Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection. Physica B: Condensed Matter, 516, 55–71 (2017)

    Article  Google Scholar 

  23. Sheikholeslami, M. Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. Journal of Molecular Liquids, 225, 903–912 (2017)

    Article  Google Scholar 

  24. Sheikholeslami, M. Numerical simulation of magnetic nanofluid natural convection in porous me-dia. Physics Letters A, 381, 494–503 (2017)

    Article  Google Scholar 

  25. Sheikholeslami, M. and Rokni, H. B. Nanofluid two phase model analysis in existence of induced magnetic field. International Journal of Heat and Mass Transfer, 107, 288–299 (2017)

    Article  Google Scholar 

  26. Cattaneo, C. Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell’ Università di Modena e Reggio Emilia, 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  27. Christov, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tibullo, V. and Zampoli, V. A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluid. Mechanics Research Communications, 38, 77–79 (2011)

    Article  MATH  Google Scholar 

  29. Hayat, T., Imtiaz, M., Alsaedi, A., and Almezal, S. On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions. Journal of Magnetism and Magnetic Materials, 401, 296–303 (2016)

    Article  Google Scholar 

  30. Sui, J., Zheng, L., and Zhang, X. Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convective Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461–468 (2016)

    Article  Google Scholar 

  31. Shehzad, S. A., Abbasi, F. M., Hayat, T., and Ahmad, B. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37, 761–768 (2016) https://doi.org/10.1007/s10483-016-2088-6

    Article  MathSciNet  Google Scholar 

  32. Li, J., Zheng, L., and Liu, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. Journal of Molecular Liquids, 221, 19–25 (2016)

    Article  Google Scholar 

  33. Hayat, T., Khan, M. I., Farooq, M., Alsaedi, A., and Khan, M. I. Thermally stratified stretching flow with Cattaneo-Christov heat flux. International Journal of Heat and Mass Transfer, 106, 289–294 (2017)

    Article  Google Scholar 

  34. Meraj, M. A., Shehzad, S. A., Hayat, T., Abbasi, F. M., and Alsaedi, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38, 557–566 (2017) https://doi.org/10.1007/s10483-017-2188-6

    Article  MathSciNet  Google Scholar 

  35. Shehzad, S. A., Hayat, T., Alsaedi, A., and Meraj, M. A. Cattaneo-Christov heat and mass flux model for 3D hydromagnetic flow of chemically reactive Maxwell liquid. Applied Mathematics and Mechanics (English Edition), 10, 1347–1356 (2017) https://doi.org/10.1007/s10483-017-2250-6

    Article  MATH  Google Scholar 

  36. Mabood, F., Shateyi, S., Rashidi, M. M., Momoniat, E., and Freidoonimehr, N. MHD stagna-tion point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Advanced Powder Technology, 27, 742–749 (2016)

    Article  Google Scholar 

  37. Hayat, T., Iqbal, R., Tanveer, A., and Alsaedi, A. Soret and Dufour effects in MHD peristalsis pseudoplastic nanofluid with chemical reaction. Journal of Molecular Liquids, 220, 693–706 (2016)

    Article  Google Scholar 

  38. Krishnamurthy, M. R., Prasannakumara, B. C., and Gireesha, B. J. Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Engineering Science and Technology, An International Journal, 19, 53–61 (2016)

    Article  Google Scholar 

  39. Hayat, T., Muhammad, T., Shehzad, S. A., Alsaedi, A., and Al-Solamy, F. Radiative three-dimensional flow with chemical reaction. International Journal of Chemical Reactor Engineering, 14, 79–91 (2016)

    Article  Google Scholar 

  40. Hayat, T., Waqas, M., Khan, M. I., and Alsaedi, A. Impacts of constructive and destructive chem-ical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to non-linear radially stretched surface. Journal of Molecular Liquids, 225, 302–310 (2017)

    Article  Google Scholar 

  41. Gerald, C. F. Applied Numerical Analysis, Addison-Wesley Publishing Company, Massachusetts (1974)

    Google Scholar 

  42. Milne, W. E. Numerical Solutions of Differential Equations, John Willey and Sons, New York (1953)

    MATH  Google Scholar 

  43. Syed, K. S., Tupholme, G. E., and Wood, A. S. Iterative solution of fluid flow in finned tubes. Proceedings of the 10th International Conference on Numerical Methods in Laminar and Turbulent Flow, Pineridge Press, Swansea, 429–440 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rauf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauf, A., Abbas, Z., Shehzad, S.A. et al. Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories. Appl. Math. Mech.-Engl. Ed. 39, 467–476 (2018). https://doi.org/10.1007/s10483-018-2314-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2314-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation