Skip to main content
Log in

Variable viscosity in peristalsis of Sisko fluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper aims to examine variable viscosity effects on peristalsis of Sisko fluids in a curved channel with compliant characteristics. Viscous dissipation in a heat transfer is studied. The resulting problems are solved using perturbation and numerical schemes to show qualitatively similar responses for velocity and temperature. A streamline phenomenon is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

V :

velocity, m/s

\(\bar \upsilon ,\bar u\) :

radial and axial velocity components, m/s

\(\bar x\) :

axial coordinate, m

\(\bar r\) :

radial coordinate, m

\(\bar t\) :

time, s

c :

speed of wave, m/s

\(\bar d\) :

half channel width, m

ρ :

fluid density, kg/m3

\( \pm \bar \eta \) :

displacement of walls, m

a,b :

shear rate viscosities, kg/(m·s)

υ :

kinematic viscosity, m2/s

c p :

specific heat, m2/s2

λ :

wavelength, m

k 1 :

thermal conductivity, W/(K·m)

\(\bar S\) :

extra stress tensor, kg/(m·s2)

\({\bar S_{ij}}\) :

stress components, i = 1, 2, j = 1, 2

p :

pressure, N/m2

\(\bar \varepsilon \) :

amplitude of wave, m

τ:

stress tensor, kg/(m·s2)

n :

fluid parameter

β T :

thermal expansion coefficient, 1/K

R*:

inner radius of curved channel, m

T :

temperature, K

T 0 :

temperature at wall, K

μ(r):

variable viscosity, kg/(m·s)

τ*:

elastic tension, kg/s2

d′:

viscous damping coefficient, kg/(m2·s)

m 1 :

mass per unit area, kg/m2

ψ :

stream function

u, θ :

dimensionless velocity and temperature

Z :

heat transfer rate

ϵ:

amplitude ratio parameter

Br :

Brinkman number

Re :

Reynolds number

δ :

wave number

Pr :

Prandtl number

k :

curvature parameter

Ec :

Eckert number

E 1,E 2,E 3 :

elasticity parameters

α :

variable viscosity parameter

n :

fluid parameter

β*:

material fluid parameter

References

  1. Latham, T. W. Fluid Motion in Peristaltic Pump, M. Sc. dissertation, MIT, Cambridge (1966)

    Google Scholar 

  2. Shapiro, A. H., Jafferin, M. Y., and Weinberg, S. L. Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech., 37, 799–825 (1969)

    Article  Google Scholar 

  3. Bhatti, M. M., Zeeshan, A., and Ijaz, N. Slip effects and endoscopy analysis on blood flow of particle-fluid suspension induced by peristaltic wave. J. Mol. Liq., 218, 240–245 (2016)

    Article  Google Scholar 

  4. Hayat, T., Zahir, H., Tanveer, A., and Alsaedi, A. Numerical study for MHD peristaltic flow in a rotating frame. Comput. Bio. Med., 79, 215–221 (2016)

    Article  Google Scholar 

  5. Hayat, T., Bibi, A., Yasmin, H., and Ahmad, B. Simultaneous effects of Hall current and homogeneous-heterogeneous reactions on peristalsis. J. Taiwan Inst. Chem. Eng., 58, 28–38 (2016)

    Article  Google Scholar 

  6. Narla, V. K., Prasad, K. M., and Ramanamurthy, J. V. Peristaltic transport of Jeffrey nanofluid in curved channels. Proced. Eng., 127, 869–876 (2015)

    Article  MATH  Google Scholar 

  7. Yasmeen, T., Hayat, T., Khan, M. I., Imtiaz, M., and Alsaedi, A. Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions. J. Mol. Liq., 223, 1000–1005 (2016)

    Article  Google Scholar 

  8. Hayat, T., Tanveer, A., Alsaadi, F., and Mousa, G. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions. J. Magn. Magn. Mater., 403, 47–59 (2016)

    Article  Google Scholar 

  9. Khabazi, N. P., Taghavi, S. M., and Sadeghy, K. Peristaltic flow of Bingham fluids at large Reynolds numbers: a numerical study. J. Non-Newtonian Fluid Mech., 227, 30–44 (2016)

    Article  MathSciNet  Google Scholar 

  10. Eldabe, N. T., Elogail, M. A., Elshaboury, S. M., and Hasan, A. A. Hall effects on the peristaltic transport of Williamson fluid through a porous medium with heat and mass transfer. Appl. Math. Model., 40, 315–328 (2016)

    Article  MathSciNet  Google Scholar 

  11. Bhatti, M. M., Zeeshan, A., and Ellahi, R. Electromagnetohydrodynamic (EMHD) peristaltic flow of solid particles in a third-grade fluid with heat transfer. Mech. & Ind., 18, 314–322 (2017)

    Article  Google Scholar 

  12. Bhatti, M. M., Zeeshan, A., and Ellahi, R. Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic mi-croorganism. Microvas. Research, 110, 32–42 (2016)

    Article  Google Scholar 

  13. Bhatti, M. M., Ellahi, R., and Zeeshan, A. Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J. Mol. Liq., 222, 101–108 (2016)

    Article  Google Scholar 

  14. Bhatti, M. M., Zeeshan, A. R., and Ellahi, N. I. Heat and mass transfer of two-phase flow with electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J. Mol. Liq., 230, 237–246 (2017)

    Article  Google Scholar 

  15. Sato, H., Kawai, T., Fujita, T., and Okabe, M. Two dimensional peristaltic flow in curved channels. Trans. Jpn. Soc. Mech. Eng. B, 66, 679–685 (2000)

    Article  Google Scholar 

  16. Hayat, T., Nawaz, S., Alsaedi, A., and Rafiq, M. Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel. Results Phys., 7, 982–990 (2017)

    Article  Google Scholar 

  17. Hayat, T., Tanveer, A., and Alsaedi, A. Numerical analysis of partial slip on peristalsis of MHD Jeffery nanofluid in curved channel with porous space. J. Mol. Liq., 224, 944–953 (2016)

    Article  Google Scholar 

  18. Hayat, T., Tanveer, A., Alsaadi, F., and Mousa, G. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions. J. Magn. Magn. Mater., 403, 47–59 (2016)

    Article  Google Scholar 

  19. Ali, N., Javid, K., Sajid, M., Zaman, A., and Hayat, T. Numerical simulations of Oldroyd 8-constant fluid flow and heat transfer in a curved channel. Int. J. Heat Mass Tran., 94, 500–508 (2016)

    Article  Google Scholar 

  20. Radhakrishnamacharya, G. and Srinivasulu, C. Influence of wall properties on peristaltic transport with heat transfer. C. R. Mecanique, 335, 369–373 (2007)

    Article  MATH  Google Scholar 

  21. Javed, M., Hayat, T., and Alsaedi, A. Peristaltic flow of Burgers’ fluid with compliant walls and heat transfer. Appl. Math. Comput., 244, 654–671 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Hina, S., Mustafa, M., Hayat, T., and Alsaedi, A. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: a useful application in biomedicine. Comput. Meth. Prog. Biomed., 135, 89–100 (2016)

    Article  Google Scholar 

  23. Tripathi, D. A mathematical model for swallowing of food bolus through the oesophagus under the influence of heat transfer. Int. J. Therm. Sci., 51, 91–101 (2012)

    Article  Google Scholar 

  24. Akbar, N. S. and Butt, A.W. Carbon nanotubes analysis for the peristaltic flow in curved channel with heat transfer. Appl. Math. Comput., 259, 231–241 (2015)

    MathSciNet  Google Scholar 

  25. Hina, S., Mustafa, M., Hayat, T., and Alsaedi, A. Peristaltic transport of Powell-Eyring fluid in a curved channel with heat/mass transfer and wall properties. Int. J. Heat Mass Tran., 101, 156–165 (2016)

    Article  Google Scholar 

  26. Tanveer, A., Hayat, T., Alsaadi, F., and Alsaedi, A. Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls. Comput. Bio. Med., 82, 71–79 (2017)

    Article  Google Scholar 

  27. Abbas, M. A., Bai, Y. Q., Bhatti, M. M., and Rashidi, M. M. Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls. Alex. Eng. J., 55, 653–662 (2016)

    Article  Google Scholar 

  28. Hayat, T., Rafiq, M., and Ahmad, B. Influences of rotation and thermophoresis onMHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties. J. Magn. Magn. Mater., 410, 89–99 (2016)

    Article  Google Scholar 

  29. Zaman, A., Ali, N., and Bég, O. A. Numerical study of unsteady blood flow through a vessel using Sisko model. Eng. Scien. Techn., An Int. J., 19, 538–547 (2016)

    Article  Google Scholar 

  30. Tanveer, A., Hayat, T., Alsaedi, A., and Ahmad, B. Mixed convective peristaltic flow of Sisko fluid in curved channel with homogeneous-heterogeneous reaction effects. J. Mol. Liq., 233, 131–138 (2017)

    Article  Google Scholar 

  31. Ali, N., Zaman, A., and Sajid, M. Unsteady blood flow through a tapered stenotic artery using Sisko model. Comput. & Fluids, 101, 42–49 (2014)

    Article  MathSciNet  Google Scholar 

  32. Hayat, T., Moitsheki, R. J., and Abelman, S. Stokes’ first problem for Sisko fluid over a porous wall. Appl. Math. Comput., 217, 622–628 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Bhatti, M. M., Zeeshan, A., and Ellahi, R. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: clot blood model. Comput. Methods Prog. Biomed., 137, 115–124 (2016)

    Article  Google Scholar 

  34. Hayat, T., Farooq, S., Alsaedi, A., and Ahmad, B. Influence of variable viscosity and radial magnetic field on peristalsis of copper-water nanomaterial in a non-uniform porous medium. Int. J. Heat Mass Tran., 103, 1133–1143 (2016)

    Article  Google Scholar 

  35. Alvi, N., Latif, T., Hussain, Q., and Asghar, S. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles. Results Phys., 6, 1109–1125 (2016)

    Article  Google Scholar 

  36. Latif, T., Alvi, N., Hussain, Q., and Asghar, S. Variable properties of MHD third order fluid with peristalsis. Results Phys., 6, 963–972 (2016)

    Article  Google Scholar 

  37. Hayat, T., Iqbal, R., Tanveer, A., and Alsaedi, A. Variable viscosity effect on MHD peristaltic flow of pseudoplastic fluid in a tapered asymmetric channel. J. Mech. (2016) https://doi.org/10.1017/jmech.2016.111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tanveer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanveer, A., Hayat, T. & Alsaedi, A. Variable viscosity in peristalsis of Sisko fluid. Appl. Math. Mech.-Engl. Ed. 39, 501–512 (2018). https://doi.org/10.1007/s10483-018-2313-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2313-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation