Applied Mathematics and Mechanics

, Volume 39, Issue 3, pp 409–422 | Cite as

A new method for particle manipulation by combination of dielectrophoresis and field-modulated electroosmotic vortex



A field-modulated electroosmotic flow (FMEOF) in a microchannel can be obtained by applying modulating electric fields in a direction perpendicular to the channel wall. Micro-vortexes are generated around the electrodes along with an EOF due to the surface charge on the modulated wall. When polarizable particles are suspended near the electrodes, they experience dielectrophoretic forces due to a non-uniform electric field. In this paper, micro-vortexes and dielectrophoretic forces are combined to achieve separation and trap different sized particles in a continuous flow. Numerical results indicate that by adjusting the driving electric field parallel to the channel wall and the modulating electric field, the ratio of dielectrophoretic and hydrodynamic forces can be altered. One type of particles can be trapped by micro-vortexes (negative dielectrophoresis (DEP)), and the other particles are transported to the downstream so that the particles are separated. The influence of the electrode length and the channel height on the trapping rate is investigated.


electroosmotic dielectrophoretic micro-vortex particle separation 

Chinese Library Classification


2010 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Pohl, H. A. Dielectrophoresis: the Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, Cambridge (1978)Google Scholar
  2. [2]
    Jones, T. B. Electromechanics of Particles, Cambridge University Press, Cambridge (2005)Google Scholar
  3. [3]
    Morgan, H. and Green, N. G. AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press, Baldock (2003)Google Scholar
  4. [4]
    Kang, Y. and Li, D. Electrokinetic motion of particles and cells in microchannels. Microfluidics and Nanofluidics, 6(4), 431–460 (2009)CrossRefGoogle Scholar
  5. [5]
    Tay, F. E. H., Yu, L., and Iliescu, C. Particle manipulation by miniaturised dielectrophoretic devices. Defence Science Journal, 59(6), 595–604 (2009)CrossRefGoogle Scholar
  6. [6]
    Khoshmanesh, K., Baratchi, S., Mitchell, A., Kalantar-Zadeh, K., and Nahavandi, S. Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics, 26(5), 1800–1814 (2011)CrossRefGoogle Scholar
  7. [7]
    Zhang, C., Khoshmanesh, K., Mitchell, A., and Kalantar-Zadeh, K. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 396(1), 401–420 (2010)CrossRefGoogle Scholar
  8. [8]
    Gascoyne, P. R. C. and Vykoukal, J. V. Dielectrophoresis-based sample handling in generalpurpose programmable diagnostic instruments. Proceedings of the IEEE, 92(1), 22–42 (2004)CrossRefGoogle Scholar
  9. [9]
    Pysher, M. D. and Hayes, M. A. Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Analytical Chemistry, 79(12), 4552–4557 (2007)CrossRefGoogle Scholar
  10. [10]
    Green, N. G. and Morgan, H. Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. Journal of Physics D: Applied Physics, 31(7), L25–L30 (1998)CrossRefGoogle Scholar
  11. [11]
    Aldaeus, F., Lin, Y., Amberg, G., and Roeraade, J. Multi-step dielectrophoresis for separation of particles. Journal of Chromatography A, 1131(1), 261–266 (2006)CrossRefGoogle Scholar
  12. [12]
    Yunus, N. A. M. and Green, N. G. Continuous separation of submicron particles using angled electrodes. Journal of Physics: Conference Series, 142(1), 012068 (2008)Google Scholar
  13. [13]
    Mathew, B., Alazzam, A., Abutayeh, M., and Stiharu, I. Modeling microparticles’ path in dielectrophoretic-FFF microfludic devices. Micro and Nanoelectronics (RSM), 2015 IEEE Regional Symposium on IEEE, 2015, 1–4 (2015)Google Scholar
  14. [14]
    Alazzam, A., Stiharu, I., Bhat, R., and Meguerditchian, A. N. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis, 32(11), 1327–1336 (2011)CrossRefGoogle Scholar
  15. [15]
    Jia, Y., Ren, Y., and Jiang, H. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis, 36(15), 1744–1753 (2005)CrossRefGoogle Scholar
  16. [16]
    Aghaamoo, M., Aghilinejad, A., and Chen, X. Numerical study of insulator-based dielectrophoresis method for circulating tumor cell separation. Proceeding of SPIE, 61, 100611A-1 (2017)Google Scholar
  17. [17]
    Yang, J., Huang, Y., Wang, X. B., Becker, F. F., and Gascoyne, P. R. C. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical Journal, 78(5), 2680–2689 (2000)CrossRefGoogle Scholar
  18. [18]
    Piacentini, N., Mernier, G., Tornay, R., and Renaud, P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics, 5(3), 034122 (2011)CrossRefGoogle Scholar
  19. [19]
    Srivastava, S. K., Bayloncardiel, J. L., Lapizcoencinas, B. H., and Minerick, A. R. A continuous DC-insulator dielectrophoretic sorter of microparticles. Journal of Chromatography A, 1218(13), 1780–1789 (2011)CrossRefGoogle Scholar
  20. [20]
    Lewpiriyawong, N. and Yang, C. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter. Electrophoresis, 35(5), 714–720 (2014)CrossRefGoogle Scholar
  21. [21]
    Mohammadi, M., Madadi, H., Casals-Terré, J., and Sellaré, J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-idielectrophoretic) microfluidic blood plasma separation. Analytical and Bioanalytical Chemistry, 407(16), 4733–4744 (2015)CrossRefGoogle Scholar
  22. [22]
    Rice, C. L. and Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. The Journal of Physical Chemistry, 69(11), 4017–4024 (1965)CrossRefGoogle Scholar
  23. [23]
    Yang, R. J., Fu, L. M., and Lin, Y. C. Electroosmotic flow in microchannels. Journal of Colloid and Interface Science, 239(1), 98–105 (2001)CrossRefGoogle Scholar
  24. [24]
    Zhou, H. and Tilton, R. D. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis. Journal of Colloid and Interface Science, 285(1), 179–191 (2005)CrossRefGoogle Scholar
  25. [25]
    Melvin, E. M., Moore, B. R., Gilchrist, K. H., Grego, S., and Velev, O. D. On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric micro-electrodes. Biomicrofluidics, 5(3), 034113 (2005)CrossRefGoogle Scholar
  26. [26]
    Gencoglu, A., Olney, D., LaLonde, A., Koppula, K. S., and Lapizco-Encinas, B. H. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis. Electrophoresis, 35(2/3), 362–373 (2014)CrossRefGoogle Scholar
  27. [27]
    Chung, C. C., Glawdel, T., Ren, C. L., and Chang, H. C. Combination of AC electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures. Journal of Micromechanics and Microengineering, 25(3), 035003 (2015)CrossRefGoogle Scholar
  28. [28]
    Rezanoor, W. M. and Dutta, P. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles. Biomicrofluidics, 10(2), 024101 (2016)CrossRefGoogle Scholar
  29. [29]
    Mirbozorgi, S. A., Niazmand, H., and Renksizbulut, M. Electro-osmotic flow in reservoir-connected flat microchannels with non-uniform zeta potential. Journal of Fluids Engineering, 128(6), 1133–1143 (2006)CrossRefGoogle Scholar
  30. [30]
    Chao, K., Chen, B., and Wu, J. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Biomedical Microdevices, 12(6), 959–966 (2010)CrossRefGoogle Scholar
  31. [31]
    Pal, D. and Chakraborty, S. An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements. Electrophoresis, 32(5), 638–645 (2011)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chuanchuan Xie
    • 1
  • Bo Chen
    • 1
  • Bing Yan
    • 1
  • Jiankang Wu
    • 2
  1. 1.School of Civil Engineering and MechanicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Mechanical and Electrical EngineeringWenhua CollegeWuhanChina

Personalised recommendations