Skip to main content
Log in

Revisit of dilation-based shock capturing for discontinuous Galerkin methods

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The idea of using velocity dilation for shock capturing is revisited in this paper, combined with the discontinuous Galerkin method. The value of artificial viscosity is determined using direct dilation instead of its higher order derivatives to reduce cost and degree of difficulty in computing derivatives. Alternative methods for estimating the element size of large aspect ratio and smooth artificial viscosity are proposed to further improve robustness and accuracy of the model. Several benchmark tests are conducted, ranging from subsonic to hypersonic flows involving strong shocks. Instead of adjusting empirical parameters to achieve optimum results for each case, all tests use a constant parameter for the model with reasonable success, indicating excellent robustness of the method. The model is only limited to third-order accuracy for smooth flows. This limitation may be relaxed by using a switch or a wall function. Overall, the model is a good candidate for compressible flows with potentials of further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, N. A. and Shariff, K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. Journal of Computational Physics, 127, 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pirozzoli, S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. Journal of Computational Physics, 178, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ren, Y., Liu, M., and Zhang, H. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 192, 365–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hill, D. J. and Pullin, D. I. Hybrid tuned center-difference-WENO method for large-eddy simulation in the presence of strong shocks. Journal of Computational Physics, 194, 435–450 (2004)

    Article  MATH  Google Scholar 

  5. Titarev, V. A. and Toro, E. F. Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 201, 238–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, Q., Ren, X. Y., and Pan, J. H. Compact high order finite volume method on unstructured grids III: variational reconstruction. Journal of Computational Physics, 337, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hesthaven, J. and Warburton, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications, Springer, New York (2008)

    Book  MATH  Google Scholar 

  8. Wang, Z. J., Liu, Y., May, G., and Jameson, A. Spectral difference method for unstructured grids II: extension to the Euler equations. Journal of Scientific Computing, 32, 45–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Z. J., Zhang, L. P., and Liu, Y. Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems. Journal of Computational Physics, 194, 716–741 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huynh, H. T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. 18th AIAA Computational Fluid Dynamics Conference, AIAA, 2007–4079 (2007)

    Google Scholar 

  11. Cockburn, B. and Shu, C. W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Journal of Computational Physics, 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burbeau, A., Sagaut, P., and Bruneau, C. H. A problem-independent limiter for high order RungeKutta discontinuous Galerkin methods. Journal of Computational Physics, 169, 111–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krivodonova, L. Limiters for high order discontinuous Galerkin methods. Journal of Computational Physics, 226, 879–896 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhu, J., Qiu, J., Shu, C. W., and Dumbser, M. Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. Journal of Computational Physics, 227, 4330–4353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, J. X. and Shu, C. W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case. Computers & Fluids, 34, 642–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, H., Baum, J. D., and Lohner, R. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. Journal of Computational Physics, 225, 686–713 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Persson, P. O. and Peraire, J. Sub-cell shock capturing for discontinuous Galerkin methods. 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, 2006–112 (2006)

    Google Scholar 

  18. Klockner, A., Warburton, T., and Hesthaven, J. S. Viscous shockcapturing in a time-explicit discontinuous Galerkin method. Mathematical Modelling of Natural Phenomena, 6, 57–83 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moro, D., Nguyen, N., and Peraire, J. Dilation-based shock capturing for high-order methods. International Journal for Numerical Methods in Fluids, 82, 398–416 (2016)

    Article  MathSciNet  Google Scholar 

  20. Cook, A. W. and Cabot, W. H. Hyperviscosity for shock-turbulence interactions. Journal of Computational Physics, 203, 379–385 (2005)

    Article  MATH  Google Scholar 

  21. Fiorina, B. and Lele, S. K. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks. Journal of Computational Physics, 222, 246–264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kawai, S. and Lele, S. K. Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. Journal of Computational Physics, 227, 9498–9526 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mani, A., Larsson, J., and Moin, P. Suitability of artificial bulk viscosity for large eddy simulation of turbulent flows with shocks. Journal of Computational Physics, 228, 7368–7374 (2009)

    Article  MATH  Google Scholar 

  24. Premasuthan, S., Liang, C., and Jameson, A. Computations of flows with shocks using spectral difference scheme with artificial viscosity. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, 2010-1449 (2010)

    Google Scholar 

  25. Cantwell, C. D., Moxey, D., and Comerford, A. Nektar++: an open-source spectral/hp element framework. Computer Physics Communications, 192, 205–219 (2015)

    Article  MATH  Google Scholar 

  26. Barter, G. E. and Darmofal, D. L. Shock capturing with PDE-based artificial viscosity for DGFEM: part I, formulation. Journal of Computational Physics, 229, 1810–1827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karniadakis, G. E. and Sherwin, S. Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  28. Kawai, S., Shankar, S., and Lele, S. Assessment of localized artificial diffusivity scheme for largeeddy simulation of compressible turbulent flows. Journal of Computational Physics, 229, 1739–1762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yu.

Additional information

Citation: Yu, J., Yan, C., and Jiang, Z. H. Revisit of dilation-based shock capturing for discontinuous Galerkin methods. Applied Mathematics and Mechanics (English Edition), 39(3), 379–394 (2018) https://doi.org/10.1007/s10483-018-2302-7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Yan, C. & Jiang, Z. Revisit of dilation-based shock capturing for discontinuous Galerkin methods. Appl. Math. Mech.-Engl. Ed. 39, 379–394 (2018). https://doi.org/10.1007/s10483-018-2302-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2302-7

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation