Skip to main content
Log in

Lattice Boltzmann simulations of high-order statistics in isotropic turbulent flows

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation-time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high-order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investigated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This validation provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Falkovich, G., Fouxon, A., and Stepanov, M. G. Acceleration of rain initiation by cloud turbulence. nature, 419, 151–154 (2002)

    Article  Google Scholar 

  2. Dimotakis, P. E. Turbulent mixing. Annual Review of Fluid Mechanics, 37, 329–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, L. P., Wexler, A. S., and Zhou, Y. Statistical mechanical description and modelling of turbulent collision of inertial particles. Journal of Fluid Mechanics, 415, 117–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Moin, P. and Mahesh, K. Direct numerical simulation: a tool in turbulence research. Annual Review of Fluid Mechanics, 30, 539–578 (1998)

    Article  MathSciNet  Google Scholar 

  5. Wang, L. M., Zhou, G. F., Wang, X. W., Xiong, Q. G., and Ge, W. Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method. Particuology, 8(4), 379–382 (2010)

    Article  Google Scholar 

  6. Qian, Y. H., Dhumieres, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  7. Chen, H. D., Chen, S. Y., and Matthaeus, W. H. A Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Physical Review A, 45(8), R5339–R5342 (1992)

    Article  Google Scholar 

  8. Lallemand, P. and Luo, L. S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61(6), 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  9. Chen, S. Y., Wang, Z., Shan, X. W., and Doolen, G. D. A Lattice Boltzmann computational fluid- dynamics in three dimensions. Journal of Statistical Physics, 68(3/4), 379–400 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peng, Y., Liao, W., Luo, L. S., and Wang, L. P. Comparison of the lattice Boltzmann and pseudo- spectral methods for decaying turbulence: low-order statistics. Computers and Fluids, 39(4), 568–591 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eggels, J. G. M. Direct and large-eddy simulation of turbulent fluid flow using the lattice- Boltzmann scheme. International Journal of Heat and Fluid Flow, 17(3), 307–323 (1996)

    Article  Google Scholar 

  12. Kim, J., Moin, P., and Moser, R. Turbulence statistics in fully-developed channel flow at low Reynolds-number. Journal of Fluid Mechanics, 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  13. Dorschner, B., Bosch, F., Chikatamarla, S. S., Boulouchos, K., and Karlin, I. V. Entropic multi- relaxation time lattice Boltzmann model for complex flows. Journal of Fluid Mechanics, 801, 623–651 (2016)

    Article  MathSciNet  Google Scholar 

  14. Wang, P., Wang, L. P., and Guo, Z. L. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Physical Review E, 94(4), 043304 (2016)

    Article  Google Scholar 

  15. D’Humi`eres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L. S. Multiple-relaxation- time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 360, 437–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Alvelius, K. Random forcing of three-dimensional homogeneous turbulence. Physics of Fluids, 11(7), 1880–1889 (1999)

    Article  MATH  Google Scholar 

  17. Cate, A. T., Derksen, J. J., Portela, L. M., and van den Akker, H. E. A. Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. Journal of Fluid Mechanics, 519, 233–271 (2004)

    Article  MATH  Google Scholar 

  18. Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., and Succi, S. Extended self- similarity in turbulent flows. Physical Review E, 48(1), 29–32 (1993)

    Article  Google Scholar 

  19. Pope, S. B. Turbulent Flows, Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  20. Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A. High-order velocity structure functions in turbulent shear flows. Journal of Fluid Mechanics, 140, 63–89 (1984)

    Article  Google Scholar 

  21. Vincent, A. and Meneguzzi, M. The spatial structure and statistical properties of homogeneous turbulence. Journal of Fluid Mechanics, 225, 1–20 (1991)

    Article  MATH  Google Scholar 

  22. She, Z. S. and Leveque, E. Universal scaling laws in fully-developed turbulence. Physical Review Letters, 72(3), 336–339 (1994)

    Article  Google Scholar 

  23. Arneodo, A., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Chavarria, R., Ciliberto, S., Camussi, R., Chill`a, F., Dubrulle, B., Gagne, Y., Hebral, B., Herweijer, J., Marchand, M., Maurer, J., Muzy, Z. F., Naert, A., Noullez, A., Peinke, J., Tabeling, P., van der Water, W., and Willaime, H. Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5 000, using extended self-similarity. Europhysics Letters, 34(6), 411–416 (1996)

    Article  Google Scholar 

  24. De Silva, C. M., Marusic, I., Woodcock, J. D., and Meneveau, C. Scaling of second- and higher- order structure functions in turbulent boundary layers. Journal of Fluid Mechanics, 769, 654–686 (2015)

    Article  Google Scholar 

  25. Toschi, F., Amati, G., Succi, S., Benzi, R., and Piva, R. Intermittency and structure functions in channel flow turbulence. Physical Review Letters, 82(25), 5044–5047 (1999)

    Article  MATH  Google Scholar 

  26. Wang, L. P., Min, H. D., Peng, C., Geneva, N., and Guo, Z. L. A lattice-Boltzmann scheme of the Navier-Stokes equation on a three-dimensional cuboid lattice. Computers and Mathematics with Applications, 2016 (2016) https://doi.org/10.1016/j.camwa.2016.06.017

    Google Scholar 

  27. Amati, G., Succi, S., and Piva, R. Massively parallel lattice-Boltzmann simulation of turbulent channel flow. International Journal of Modern Physics C, 8, 869–877 (1996)

    Article  Google Scholar 

  28. Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J., and Bodenschatz, E. Measurement of particle accelerations in fully developed turbulence. Journal of Fluid Mechanics, 469, 121–160 (2002)

    Article  MATH  Google Scholar 

  29. Mordant, N., Crawford, A.M., and Bodenschatz, E. Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Physical Review Letters, 93(21), 214501 (2004)

    Article  Google Scholar 

  30. Mordant, N., Leveque, E., and Pinton, J. F. Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New Journal of Physics, 6(116), 1–44 (2004)

    MathSciNet  Google Scholar 

  31. Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S., and Toschi, F. Acceleration statistics of heavy particles in turbulence. Journal of Fluid Mechanics, 550, 349–358 (2006)

    Article  MATH  Google Scholar 

  32. Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A., and Toschi, F. Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Physical Review Letters, 93(6), 064502 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Simulations were run on the super-computer of Tianhe-1A at the National Supercomputer Center in Tianjin, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei He.

Additional information

Citation: Jin, G. D., Wang, S. Z., Wang, Y., and He, G. W. Lattice Boltzmann simulations of high-order statistics in isotropic turbulent flows. Applied Mathematics and Mechanics (English Edition), 39(1), 21–30 (2018) https://doi.org/10.1007/s10483-018-2254-9

Project supported by the Science Challenge Program (No. TZ2016001), the National Natural Science Foundation of China (Nos. 11472277, 11572331, 11232011, and 11772337), the Strategic Priority Research Program, Chinese Academy of Sciences (CAS) (No. XDB22040104), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SYS002), and the National Basic Research Program of China (973 Program) (No. 2013CB834100)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, G., Wang, S., Wang, Y. et al. Lattice Boltzmann simulations of high-order statistics in isotropic turbulent flows. Appl. Math. Mech.-Engl. Ed. 39, 21–30 (2018). https://doi.org/10.1007/s10483-018-2254-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2254-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation